Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Числовые характеристики случайных величин (моментные функции).

Теоремы о спектрах | Спектры модулированных сигналов | Автокорреляционная функция сигналов | Взаимокорреляционная функция двух сигналов | Сигналы и векторы. | Аналитический сигнал. | Преобразования Гильберта | Дискретное преобразование Фурье | Быстрое преобразование Фурье | Z-преобразование |


Читайте также:
  1. AK-102, AK-104, AK-105 -характеристики, описание, фото
  2. AK-107, AK-108 (Автомат Калашникова) - характеристики, описание, фото
  3. AMZ, ГАЗ-3934, «Сиам», Характеристики, Описание, Фото!
  4. AMZ, ГАЗ-3937. «Водник», Характеристики, Описание, Фото!
  5. II. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
  6. II. По величине дозы хлора.
  7. А) заключается в сравнении величин емкости, измеренных при двух различных частотах;

Вполне удовлетворительные для практики, хотя и менее детальные, характеристики случайных процессов можно получить, вычисляя моменты тех случайных величин, которые наблюдаются в сечениях этих процессов. Поскольку в общем случае эти моменты зависят от временных аргументов, они получили название моментных функций.

Для техники наибольшее значение имеют три моментные функции низших порядков, называемые математическим ожиданием, дисперсией и функцией корреляции.

Математическое ожидание – начальный момент I-го порядка:

(6.5)

есть среднее значение процесса X(t) в текущий момент времени t: усреднение проводится по всему ансамблю реализаций процесса.

Дисперсия центральный момент II-го порядка:

(6.6)

позволяет судить о степени разброса мгновенных значений, принимаемых отдельными реализациями в фиксированном сечении t, относительно среднего значения.

Двумерный центральный момент II-го порядка.

(6.7)

называется функцией корреляции случайного процесса X(t). Эта моментная функция характеризует степень статистической связи тех случайных величин, которые наблюдаются при . Из сравнения формул (6.6) и (6.7) видно, что при совмещении сечений функция корреляции численно равна дисперсии:

(6.8)

 


Дата добавления: 2015-08-20; просмотров: 118 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Случайные процессы. Ансамбль реализаций.Плотность вероятности и функция распределения.| Стационарные и эргодические случайые процессы.

mybiblioteka.su - 2015-2024 год. (0.005 сек.)