Читайте также:
|
|
Первые промышленные установки каталитического крекинга появились на нефтеперерабатывающих заводах в 20-30-х годах прошлого века. Вначале в процессе использовались реакторы с плотным (стационарным) слоем крупногранулированного катализатора (рис.5.1, а), однако от него вскоре отказались. Причина заключалась в том, что, в результате высокой скорости химических реакций, с одной стороны, и низкой селективности катализатора, с другой, последний очень быстро закоксовывался и терял свою активность. Это происходило не смотря на то, что первоначально в качестве сырья использовались дизельные фракции, менее склонные к коксообразованию. Требовались частые остановки (через 7-10 дней) для регенерации катализатора, которая осуществлялась без его выгрузки, непосредственно в реакторах. Вследствие этого процесс являлся по сути периодическим, а его производительность оставалась невысокой.
Попытки устранить отмеченный недостаток привели ученых и производственников к мысли осуществить непрерывную регенерацию катализатора. Для этого необходимо было вывести его в отработанном (закоксованном) состоянии, регенерировать в отдельном аппарате и вернуть в восстановленном виде в реактор. Другими словами, следовало организовать непрерывную циркуляцию катализатора, а также разработать новые конструкции реактора и регенератора.
Эта идея была внедрена в практику в начале 40-х годов прошедшего столетия на установках с движущимся крупногранулированным (шариковым) катализатором. Его перемещение (циркуляция) между реактором и регенератором осуществлялось с помощью пневмотранспорта, где в качестве носителя использовался воздух. Такая циркуляция катализатора схематично показана на рис. 5.1, б. Со времени внедрения процесса с движущимся катализатором характерной особенностью всех установок каталитического крекинга стало наличие двух аппаратов – реактора и регенератора, работающих всегда в паре и тесно связанных между собой. Такое решение позволило перевести процесс в разряд непрерывных и в значительной степени повысить его эффективность. Тем не менее, установки этого типа также имели весьма существенный недостаток, связанный с пневмотранспортом крупногранулированного катализатора. Высокий удельный расход транспортирующего газа не позволял значительно повысить мощность установки. Кроме того, длительное время пребывания катализатора в реакторе, связанное с невысокой скоростью движения, обуславливало недостаточную эффективность его использования.
Рисунок 5.1 – Варианты схем каталитического крекинга: а) с неповижным слоем катализатора; б) с движущимся слоем крупногранулированного катализатора; в) с псевдоожиженным слоем катализатора; г) с лифт-реактором; 1 – реактор; 2 – регенератор; 3 – сепаратор; І – сырье; ІІ – воздух; ІІІ – продукты сгорания; IV – продукты реакции; V – водяной пар
Дальнейшее развитие каталитического крекинга сопровождалось переходом на процесс в псевдоожиженном (кипящем) слое катализатора (за рубежом процесс получил название " флюид " или FCC), для чего последний использовался вначале в виде частиц неправильной формы (пылевидный), а впоследствии преимущественно в виде мельчайших шариков (микросферический). В обоих случаях размеры зерен катализатора составляли
10-120 мкм. Следует отметить, что псевдоожиженный слой твердых частиц напоминает жидкость не только по внешнему виду, но и по способности легко перемещаться из одного аппарата в другой по трубопроводам: вниз (под действием силы тяжести) и вверх (с потоком газа или паров). Схема такого процесса представлена на рис.5.1, в. Установки с псевдоожиженным слоем катализатора получили наибольшее распространение в нефтеперерабатывающей промышленности многих стран. Это объясняется тем, что в таком процессе обеспечивается равномерный и эффективный тепло – и массообмен во всем реакционном пространстве. При этом заметно уменьшается время, необходимое для диффузии молекул сырья к поверхности катализатора, следовательно, и в целом сокращается время контакта. Это явление было отмечено при эксплуатации установок подобного типа, особенно при использовании цеолитсодержащего катализатора, и позволило перейти к процессу с, так называемым, лифт-реактором (рис.5.1, г). Лифт-реактор представляет собой вертикальную трубу, в которой транспорт катализатора потоком паров сырья сочетается с протеканием химических реакций. Время пребывания катализатора и сырья в таком реакторе составляет 5-7 секунд и этого вполне достаточно (при определенной активности катализатора) для завершения основных процессов превращения, приводящих к образованию целевых продуктов.
Последним словом в развитии рассматриваемого процесса явилось создание системы MSCC (каталитический крекинг миллисеконд). Главная ее особенность заключается в очень коротком времени испарения сырья и последующем его контакте с катализатором, что подчеркивается в названии. Справедливости ради отметим, что это время исчисляется, конечно, не тысячными долями секунды, а несколько большей величиной (в среднем 0,5-1,5 секунд), которая однако значительно меньше таковой, например, в лифт-реакторе.
Рассмотрим систему MSCC, которая, в частности, в ОАО "Мозырский НПЗ" именуется комплексом каталитического крекинга. Структурно комплекс подразделяется на 5 секций:
секция 1000 – утилизация тепла и очистка газов регенерации, вспомогательные системы;
секция 2000 – каталитический крекинг MS и фракционирование;
секция 3000 – газофракционирование;
секция 4000 – очистка сжиженного углеводородного газа от сернистых соединений;
секция 5000 – очистка бензиновой фракции от сернистых соединений
Блок – схема комплекса и его взаимосвязь с другими установками завода показана на рис.5.2.
Следует сказать, что всякая технологическая установка как самостоятельная структурная единица в составе НПЗ, как правило, разделяется на секции, блоки или узлы. Такое деление преследует две цели. Во-первых, повышается безопасность эксплуатации, поскольку между элементами схемы (блоками и т.п.) устанавливаются отсекающие и изолирующие устройства. Во-вторых, возможно более гибко и эффективно управлять процессом.
Главной и новой для Мозырского НПЗ частью комплекса является секция 2000, включающая собственно каталитический крекинг и первичное фракционирование продуктов реакции. Ее часто называют сердцем установки. Здесь установлено оборудование, конструкция и эксплуатация которого имеет свои характерные особенности и сложности. Если для других секций можно отыскать подобные аппараты и технологические потоки на действующих установках (например, секция газофракционирования 3000 аналогична секции 400 установки ЛК-6У), реакторно-регенераторный блок является во всех отношениях новым и уникальным для завода. Именно поэтому мы остановимся подробно только на работе секции 2000.
Рисунок 5.2 – Блок-схема комплекса каталитического крекинга и её связь с объектами завода
Дата добавления: 2015-08-02; просмотров: 213 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Каталитического крекинга | | | Описание технологической схемы секции 2000 |