Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия

Доверительные интервалы оценок параметров и проверка гипотез об их значимости. | Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза | Определение | Спецификация регрессионной модели. Методы отбора факторных переменных. | Полиномиальная регрессия | Лаговые переменные и зависимости между разновременными значениями переменных. | Автокорреляционная функция. |


Читайте также:
  1. I.II Прекращение доверенности и его правовые последствия
  2. II. ПОСЛЕДСТВИЯ
  3. lt;variant>разделении задачи на составляющие, в рамках которых осуществляется поиск наиболее рациональных идей
  4. V. Синдромы и охота на ошибки
  5. А дорога и линейной перспективе; 6 ■ дорога is естественно воспринимаемой перспективе.
  6. АНАЛИЗИРУЙТЕ ПОСЛЕДСТВИЯ
  7. АППРОКСИМАЦИЯ ЛИНЕЙНОЙ КОМБИНАЦИЕЙ ФУНКЦИЙ

Предложение об ошибках в классической модели формируются наиболее жестким и не всегда реалистичным путем:

Предполагается, что ошибка ((e = 1 … N)) образует так называемый слабый белый шум – последовательность центрированных () и не коррелированных случайных величин с одинаковыми дисперсиями

Свойство центрированности практически не является ограничением, так как при наличии постоянного регрессора среднее значение ошибки можно было бы включить в соответствующий коэффициент ()

В ряде случаев сделанные предложения об ошибках будут дополняться свойствами нормальности – случайный вектор e имеет нормальное распределение. Эту модель мы будем называть классической моделью с нормально распределительными ошибками.

Многомерное нормальное распределение задается своим вектором и матрицей ковариации – здесь она имеет вид, где 1 – единичная матрица. Если компоненты вектора корелированы, следовательно, автоматически независимы, следовательно, ошибки в модели образуют последовательность независимых одинаково нормально распределенных случайных величин N (0;).

Если каждая из величин нормально распределена, то вектор e, из них составленный, ну обязан быть нормально распределенным.

Доверительные интервалы оценок параметров и проверка гипотез об их значимости.

Доверительные интервалы параметров регрессии определяются следующим образом.

Здесь td - значение t-статистики для выбранного уровня значимости d. Величина p=1-d называется доверительной вероятностью или уровнем надежности, нередко выражаемым в процентах. Это показатель, характеризует вероятность того, что теоретическое значение параметра регрессии будет находиться в полученном доверительном интервале.

Тестирование на нормальность остатков. Тесты χ2 Пирсона и Харке–Бера.

Классическая модель линейной регрессии.

Доверительные интервалы оценок параметров и проверка гипотез об их значимости.

Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза.

Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели. Критерий Стьюдента.

После того как уравнение линейной регрессии найдено, проводится оценка значимости как уравнения в целом, так и отдельных ее параметров.

Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. b=0, и, следовательно, фактор x не оказывает влияния на результат y.


Дата добавления: 2015-07-16; просмотров: 221 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Не балуй меня, ведь я знаю, что ты не обязана исполнять каждое мое желание.| Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия.

mybiblioteka.su - 2015-2025 год. (0.008 сек.)