Читайте также:
|
|
На кристалах можуть бути розвинутими як грані однакові за своєю зовнішньою формою і розмірами (в ідеальному випадку), так і грані різні за своєю формою і розмірами. Грані кристалів однакові за своєю формою і розмірами і пов’язані між собою відповідними елементами симетрії носять назву простих форм (табл. 1.3).
Сукупність декількох простих форм розвинутих на одному кристалі і пов’язаних між собою елементами симетрії носить назву комбінації. Визначення форм кристалів проводиться як на реальних кристалах, так і на дерев’яних моделях.
Серед комбінацій виділяють як прості, які складаються з одного виду простих форм, так й складні, які представлені різними простими формами. Кількість простих форм тої або іншої комбінації визначається формулою симетрії. При цьому кожному виду симетрії властива своя група простих форм, які утворюють комбінації. В комбінацію триклінної сингонії входять дві прості форми, моноклінної - чотири, ромбічної - сім, тригональної - одинадцять, гексагональної - дев’ять і кубічної - п’ятнадцять. Прості форми триклінної сингонії завжди переходять в моноклінну, ромбічну, тригональну, тетрагональну і гексагональну сингонії.
При визначенні форми граней як комбінацій, так і простих форм необхідно пам’ятати, що тільки грані закритих простих форм мають свою постійну зовнішню форму. Форма граней відкритих простих форм залежить від способу їх з’єднань з іншими простими формами. В комбінаціях зовнішня форма граней простих форм майже завжди не відповідає їх вихідному виду. При їх визначенні необхідно кожну грань простої форми уявно продовжити до можливого перетину з іншими простими формами і уявити собі її форму.
Таблиця 1.3 – Прості форми кристалічних багатогранників та їх кристалографічні формули
Дата добавления: 2015-11-14; просмотров: 69 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Симетрія кристалів і її визначення | | | Морфологія мінеральних агрегатів |