Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Опорные решения

Линейные операции над матрицами. | Теорема об ортогональных проекциях вектора). | Признак ортогональности (перпендикулярности) векторов. | Нормальный вектор прямой. | Направляющий вектор | Уравнение прямой с угловым коэффициентом | Примеры задач линейного программирования | Основная задача ЛП (ОЗЛП). |


Читайте также:
  1. I. Этапы решения задач на компьютере.
  2. Sequential Decisions (последовательные решения)
  3. Автоматизированные решения
  4. Административные решения
  5. Алгоритм решения
  6. Алгоритм решения задачи
  7. Алгоритм симплекс-метода решения общей задачи линейного программирования

Каноническая задача линейного программирования в векторной форме имеет вид:

Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.

Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное , где – число неизвестных, – ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.

Опорным решением задачи линейного программирования называется такое допустимое решение , для которого векторы условий, соответствующие положительным координатам , линейно независимы.

Число отличных от нуля координат опорного решения не может превосходить ранга системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).

Если число отличных от нуля координат опорного решения равно , то такое решение называется невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше , такое решение называется вырожденным.

Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.

Теорема. Любое опорное решение является угловой точкой области допустимых решений.

Теорема. Любая угловая точка области допустимых решений является опорным решением.


Дата добавления: 2015-11-16; просмотров: 56 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Графический метод решения задач линейного программирования (алгоритм)| Транспортная задача.

mybiblioteka.su - 2015-2025 год. (0.005 сек.)