Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Шифратор. Определение, принципы построения и особенности функционирования. Клавиатурные, приоритетные шифратор, кодоперетворювачи.

ГЕНЕРАТОР СЛОВ | Остановка моделирования | Основные функции АЛГЕБРЫ ЛОГИКИ И ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ДЛЯ ИХ РЕАЛИЗАЦИИ. Законы алгебры логики. | СИНТЕЗ Логическая схема в базисе (И, ИЛИ, НЕ), И-НЕ, ИЛИ-НЕ. | ТИПЫ ДАННЫХ И СТРУКТУРЫ УПРАВЛЕНИЯ В МП INTEL (на примере 486) | АРХИТЕКТУРА СИСТЕМНОГО ИНТЕРФЕЙСА СОВРЕМЕННЫХ ПК. НАЗНАЧЕНИЕ КОМПОНЕНТОВ. РЕЖИМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО системными шинами. | Назначение и организация системной памяти. Физическая организация микросхем ПЗУ, статические и динамические ОЗУ. Типы динамической памяти (FPM, EDO, BEDO, SDRAM) | Архитектура и принцип работы часов реального времени RTC и CMOS памяти. Возможности программирования | Архитектура системного таймера и назначения каналов таймера. Режимы работы каналов таймера. Возможности программирования | Архитектура и организация подсистемы DMA (КПДП) в ПК. Управляющая информация и программирование |


Читайте также:
  1. I ОСНОВНЫЕ ПРИНЦИПЫ
  2. I. ОБЩИЕ ПОЛОЖЕНИЯ. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
  3. А) Задачи, принципы и основные мероприятия санитарно-противоэпидемического обеспечения в чрезвычайных ситуациях.
  4. Анализ распределения судейских оценок для построения шкалы равных интервалов
  5. Анатомические особенности верхней конечности.
  6. Анатомические особенности нижней конечности.
  7. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПЕРИОДОНТА

1.9 ШИФРАТОРИ. ВИЗНАЧЕННЯ, ПРИНЦИПИ ПОБУДОВИ ТА ОСОБЛИВОСТІ ФУНКЦІОНУВАННЯ. КЛАВІАТУРНІ, ПРІОРИТЕТНІ ШИФРАТОРИ, КОДОПЕРЕТВОРЮВАЧІ.

Шифратор - это логическое устройство, выполняющее преобразование позиционного кода в n разрядный двоичный код. Таким образом, шифратор - это комбинационное устройство, реализующее обратную дешифратору функцию.
Пример шифратора для трех переменных.

Таблица состояния шифратора:

Схема шифратора семиразрядного позиционного кода в трехразрядный двоичный код приведена на рис. 2.12.


1.10. Мультиплексор: ОПРЕДЕЛЕНИЕ, ПРИНЦИПЫ ПОСТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ.

1.10. МУЛЬТИПЛЕКСОРИ: ВИЗНАЧЕННЯ, ПРИНЦИПИ ПОБУДОВИ ТА ФУНКЦІОНУВАННЯ.

Мультиплексор - коммутатор цифровых сигналов. Мультиплексор представляет собой комбинационное устройство с m информационными, n управляющими входами и одним выходом. Функционально мультиплексор состоит из m элементов конъюнкции, выходы которых объединены дизъюнктивно с помощью элемента ИЛИ с m входами. На одни входы всех элементов конъюнкции подаются информационные сигналы, а другие входы этих элементов соединены с соответствующими выходами дешифратора с n входами.

Функциональная схема мультиплексора приведена на рис.2.13.



Из рис. 2.13. следует, что мультиплексор содержит дешифратор на соответствующее число выходов (число выходов дешифратора определяется числом информационных входов мультиплексора), элементы конъюнкции на два или на три входа каждый и элемент дизъюнкции с числом входов, равным количеству информационных линий D0... Dm. Число входов элементов И может быть равным только двум, однако, во многих случаях возникает необходимость стробирования выходного сигнала мультиплексора импульсами независимого источника. В таких случаях в структуре мультиплексора используются элементы И с тремя входами. Одни из входов всех элементов конъюнкции, в последнем случае, объединяются, и по этой линии подается сигнал разрешения работы мультиплексора (стробирующий сигнал). Наличие дополнительного управляющего входа расширяет функциональные возможности мультиплексора и позволяет проще реализовать методы борьбы с гонками.



На рис. 2.14 показано обозначение мультиплексора на принципиальных и функциональных электрических схемах.
Из уравнения мультиплексора видно, что на его выход будет передаваться сигнал только с одного входа, номер которого совпадает с числом, соответствующим кодовой комбинации Х1 и Х2. Если Х1=Х2=0, на выход мультиплексора будет передаваться сигнал с входа D0. Когда на адресных (управляющих) входах Х1=1 и Х2=0, то на выход будет передаваться сигнал с входа D1 и т.д.

На базе мультиплексоров можно построить различные комбинационные устройства с минимальным числом дополнительных элементов логики. Следует отметить, что мультиплексоры хотя, и предназначены для коммутации цифровых сигналов, но с помощью мультиплексоров, изготовленных по КМОП технологии, можно коммутировать и аналоговые сигналы.

1.11. Демультиплексор: ОПРЕДЕЛЕНИЕ, ПРИНЦИПЫ ПОСТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ.

1.11. ДЕМУЛЬТИПЛЕКСОРИ: ВИЗНАЧЕННЯ, ПРИНЦИПИ ПОБУДОВИ ТА ФУНКЦІОНУВАННЯ.

Демультиплексор – обратный Мультиплексору (вопрос 1.10)

В цифровых устройствах часто возникает задача передачи цифровой информации от "m" различных устройств к "n" приемникам через канал общего пользования. Для этого на входе канала устанавливается устройство, называемое МУЛЬТИПЛЕКСОРОМ, которое согласно коду адреса A m подключает к каналу один из источников информации, а на выходе канала устройство ДЕМУЛЬТИПЛЕКСОР обеспечивает передачу информации к приемнику, имеющему цифровой адрес A n

Логика функционирования демультиплексора для случая n = 4 иллюстрируется таблицей 3.6, в которой Y0...Y3 - сигналы, подаваемые на входы приемников информации.

1.12. Сумматоры комбинационного типа: НАЗНАЧЕНИЕ, КЛАССИФИКАЦИЯ И ПРИНЦИПЫ ПОСТРОЕНИЯ.

1.12. СУМАТОРИ КОМБІНАЦІЙНОГО ТИПУ: ПРИЗНАЧЕННЯ, КЛАСИФІКАЦІЯ ТА ПРИНЦИПИ ПОБУДОВИ.

Сумматор - это лектронная логическая схема (рис. 3.8), формирующая сигналы суммы (S) и переноса (Р) при сложении двух двоичных чисел (А, В) и сигнала переноса соседнего младшего разряда (С) по правилам двоичной арифметики (см. таблицу 3.3).

Рис. 3.8 - Одноразрядный сумматор

Таблица 3.3 -Таблица состояний одноразрядного сумматора

Принципиальная схема одноразрядного сумматора, реализованная на элементах "И-ИЛИ-НЕ", приведена на рис. 3.10.

Более простая схема сумматора может быть реализована с учетом соотношения: сигнал суммы (S) равен единице, если только один входной сигнал (А, В, С) равен единице и отсутствует перенос (Р) или все три входных сигнала равны единице:
_ _ _
S = A P + B P + C P + A B C (3.7)



Упрощенная схема одноразрядного сумматора, реализующая функцию (3.7), приведена на рис. 3.11. В этой схеме время задержки распространения сигнала суммы (S) больше, чем время задержки сигнала переполнения (Р).
Логический элемент "И-ИЛИ-НЕ" имеется в наборе любой серии ТТЛ и ТТЛШ (см. рис. 2.16). Для КМОП элементов эти схемы сумматоров легко реализуются в базисе "И-НЕ".
На основе одноразрядного сумматора реализуются схемы многоразрядных сумматоров. На рис. 3.12 приведена схема четырехразрядного сумматора (аналогично можно реализовать сумматор на 8 или 16 разрядов). На входы А1..А4 подается первое слагаемое (младший разряд - А1), на входы В1..В4 - второе. Вход переноса (С) младшего разряда подключен к нулевому логическому уровню (к общей шине).Четыре разряда суммы формируются на выходах S1..S4, пятый разряд суммы - на выходе Р4.



В формировании сигналов S4, P4 участвуют все входные переменные А1..А4, В1..В4. Но ко входам последней логической схемы эти сигналы проходят через разное количество элементов, что вызывает появление на выходах ложных коротких импульсов, образованных эффектом гонок (состязаний).


Многоразрядный сумматор с последовательным переносом. Таким образом, в общем случае для каждого разряда необходима логическая схема с тремя входами ai, bi, Ci и двумя выходами Si, Ci+1. Такая схема и есть полный сумматор. Ее можно реализовать с помощью двух полусумматоров.


Входы Промежуточные величины Выходы
ai bi сi Pi gi ri Si Ci+1
               
               
               
               
               
               
               
               


Для сложения двух многоразрядных двоичных чисел на каждый разряд необходим один полный сумматор. Только в младшем разряде можно обойтись полусумматором. На рис. 2.23 приведена схема, предназначенная для сложения двух четырехразрядных чисел А и В. Эта схема выпускается в интегральном исполнении. В ее младшем разряде также используется полный сумматор, чтобы иметь возможность наращивания разрядности схемы.



Рис. 2.23. Сумматор с последовательным переносом
Сумматоры с параллельным переносом. Время выполнения операции в сумматоре с параллельным переносом намного больше времени сложения в одноразрядном сумматоре. Действительно, сигнал переноса С4 только тогда может принять истинное значение, когда будет установлено правильное значение С3. Такой порядок выполнения операций называется последовательным переносом (Ripple Carry).
Чтобы уменьшить время операции сложения многоразрядных чисел можно использовать схемы параллельного переноса (Carry look-ahead). При этом все сигналы переноса вычисляются непосредственно по значениям входных переменных.

Согласно таблице переключений, в общем случае для сигнала переноса любого i-го разряда справедливо соотношение:

. (1)
Величины gi, ri вычисляются в качестве промежуточных результатов и в полном сумматоре. Следовательно, их получение не требует дополнительных затрат. Смысл этих величин объясняется совсем просто. Сигнал gi вырабатывается тогда, когда в данном разряде перенос происходит из-за комбинации входных переменных ai,bi. Поэтому его называют функцией генерации переноса. Сигнал Pi показывает, передается ли полученный в младшем разряде сигнал переноса Ci дальше. Поэтому он называется функцией распространения переноса.

Пользуясь выражением (1), можно вывести следующие формулы для вычисления сигналов переноса:

(2)
Очевидно, что хотя полученные выражения достаточно сложные, время формирования сигнала переноса в любой разрад с помощью вспомогательных функций определяется только времением здержки распространения сигнала на двух элементах. Эти функции реализуются специальным комбинационным устройством – схемой ускоренного переноса.

Схема сумматора с параллельным переносом приведена на рис. 2.24, а. На рис. 2.24, б изображена схема устройства параллельного переноса в группе из четырех разрядов. Эта схема реализует систему уравнений (2).


Рис. 2.24. Схема сумматора с параллельным переносом

 


Дата добавления: 2015-11-16; просмотров: 108 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ с тремя состояниями ВЫХОДА. ПРИНЦИП ДЕЙСТВИЯ. Упорядочение работы НЕСКОЛЬКИХ ЭЛЕМЕНТОВ НА ОДНУ ОБЩУЮ ЛИНИЮ ИНТЕРФЕЙСА (МАГИСТРАЛЬНЫЕ ИНТЕРФЕЙСЫ)| Накапливающие сумматоры. ОСОБЕННОСТИ ИХ ФУНКЦИОНИРОВАНИЯ.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)