Читайте также:
|
|
У вибраній прямокутній системі координат число зображається точкою
(рис.1.1). Навпаки, якщо задана точка
, то їй співставляється к.ч.
. Таким чином, між множиною к.ч. і множиною точок площини (з заданою прямокутною системою координат) встановлюється взаємно однозначна відповідність.
Рис.1.1.
Очевидно, що дійсні числа зображуються точками на осі , а чисто уявні - на осі
; з цієї причини
називають дійсною, а
– уявною віссю; площину
називають комплексною площиною, а к.ч. - точками цієї площини.
Приклади. Знайти множину к.ч., що задовольняють умову:
;
.
Розв’язання.
1) Нехай . Умову перепишемо в рівносильній формі:
Відповідь: множина чисел пряма
2) Якщо , то,
, отже,
Відповідь: множина чисел - півплощина, що розміщена нижче прямої
.
Побудувати на площині ХОУ к.ч., записати їх дійсну та уявну частину. Обчислити модулі к.ч.
1. . 2.
. 3.
Відповіді. 1.
2.
.
3.
.
4.10. Коло, круг, кільце
Нехай дано числа
Рівнянню задовольняють всі числа (і тільки вони), що розміщені на колі радіуса
з центром у точці
. Дійсно, якщо
, то
.
Очевидно, що нерівності і
задають відповідно круг і кільце. На рис. 1.2 зображено кільце
з центром у точці
.
Звернемо увагу на вироджені випадки кільця :
(1) – круг з виключеним центром
;
(2) – зовнішність круга
– круг з границею;
(3) – вся площина з виключеною точкою
;
(4) при маємо пусту множину.
Рис. 1.2
Приклад. З’ясувати, чи належить точка p до круга
.
Розв’язання. Порівняємо радіус з відстанню
від центра круга
до точки
p:
.
Відповідь: точка p розміщена поза кругом.
Дата добавления: 2015-07-12; просмотров: 81 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Множення к.ч. | | | Комплексне число як вектор |