Читайте также: |
|
Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака — выраженной сократительной способности. Сократимость свойственна в той или иной степени клеткам всех тканей организма вследствие наличия в их цитоплазме сократительных
Рис. 1.4.14. Гладкомышечная ткань:
а — гладкомышечные клетки складываются в пучки, между которыми видны прослойки соединительной ткани; б —цитологические особенности гладкомышечных клеток. Ядра палочковидной формы. В цитоплазме видны миофиламенты
Основным структурным элементом гладкой мышцы является мышечная клетка (гладкий миоцит), имеющая, как правило, веретеновид-ную или звездчатую форму. Длина этих клеток довольно разнообразна (от 20 до 1000 мкм). Гладкие миоциты окружены сарколеммой, которая снаружи покрыта базальной мембраной. В саркоплазме обнаруживаются органеллы и включения. Поскольку сокращение требует затраты большого количества энергии, цитоплаз-
Ткани
ма мышечных клеток насыщена профилями сар-коплазматического ретикулума (эндоплазмати-ческий ретикулум). В клетке, как правило, одно ядро, которое располагается вдоль клетки. Периферическая часть саркоплазмы занята мио-филаментами (рис. 1.4.15).
Отдельные мышечные клетки складываются в плотный пучок. В зависимости от типа органа или ткани отдельные клеточные пучки ориентируются в стенке различным образом, но всегда так, чтобы их сокращение поддерживало тонус стенки (сосуда, стенки желудка и т. д.).
Рис. 1.4.15. Ультраструктурная организация гладко- |
мышечных клеток: |
а — продольный срез; 6 — поперечный срез; в — большее увеличение (/ — актиновые фибриллы; 2 — темные зоны; 3 — плотные тельца; 4 — коллагеновые волокна; 5 — пузырьки) |
Функцию сокращения мышечной клетки и комплекса мышечных клеток обеспечивают тонкие (актиновые) и толстые (миозиновые) миофиламенты. Эти филаменты фибрилл не образуют. Тонкие филаменты преобладают над толстыми по количеству и занимаемому ими объему клетки. Располагаются они пучками, по 10—20 филаментов, лежащих параллельно оси клетки. Концы актиновых филаментов закреплены в особых образованиях, находящихся в саркоплазме — плотных тельцах. Последние
также служат местом прикрепления промежуточных филаментов.
Миозиновые (толстые) филаменты отличаются от таковых поперечнополосатой мышцы различной длиной. Сокращение гладких миоци-тов обеспечивается взаимодействием актиновых и миозиновых филаментов и развивается в соответствии с моделью скользящих нитей. Возникающая сила передается через внутри-цитоплазматические филаменты плотным тельцам, прикрепленным к сарколемме. Благодаря этому продольная ось волокна укорачивается (рис. 1.4.16, 1.4.17).
Отдельные мышечные клетки очень компактно располагаются и разделены промежутками 40—80 нм. Межклеточные пространства выполнены компонентами базальной мембраны, кол-лагеновыми, эластическими волокнами, которые совместно с отдельными клетками (фиброблас-тами, тучными клетками) образуют эндомизий. Последний содержит сосуды и нервные волокна и способствует объединению миоцитов в пласты и слои (рис. 1.4.18). Формированию пласта миоцитами способствует образование ими различных связей (по типу миоцит—миоцит, мио-цит—клетка другого типа, миоцит—межклеточное вещество). В местах межклеточных соединений базальная мембрана отсутствует. Межклеточные соединения в пластах обеспечивают механическую и химическую (ионную) связь между ними. К соединениям между гладкими миоцитами относят интердигитации, плотные соединения, щелевые соединения (нексусы).
Благодаря вышеописанным связям сокращение отдельных клеток передается всему клеточному пласту, который обладает свойством обратимой деформации.
Сокращение гладкой мышечной ткани происходит под воздействием нервных импульсов, гуморальных влияний, а также вследствие раздражения миоцитов в отсутствие нервных и гуморальных воздействий (миогенная активность).
Иннервация гладкомышечной ткани осуществляется вегетативной нервной системой (симпатическая и парасимпатическая). Нервные окончания обнаруживаются лишь в отдельных клетках и имеют вид варикозно расширенных участков тонких веточек аксонов. На соседние миоциты возбуждение передается при помощи щелевых соединений.
Возможность гормональной регуляции активности миоцитов связана с наличием в клетках соответствующих рецепторов. Благодаря этому на клетки влияют такие вещества, как гистамин, серотонин, брадикинин, эндотелии, окись азота, лейкотриены, простагландины, нейротензин, вещество Р, бомбезин, холецито-кинин, вазоактивный интерстициальный пептид, опиоиды и др.
Растяжение мышцы является физиологическим раздражителем гладкой мышцы. При этом
Глава 1. КЛЕТКА И ТКАНИ
11 |
Рис. 1.4.16. Взаимосвязь элементов цитоскелета и сократительного аппарата гладкомышечной клетки (по В. J1. Быкову, 1999):
1 —плотные пластинки; 2 — кавеолы; 3 — сарколемма; 4 — немышечный актин; 5 — интегрины; 6 — комплекс адгезивных белков; 7 — мышечный актин; 8 — связывающие белки; 9 — межклеточное вещество; 10 — плотные тельца; // — промежуточные филаменты; 12 — миозиновые миофиламенты
Рис. 1.4.17. Механизм сокращения гладкомышечной клетки
мышцы |
Рис. 1.4.18. Схема строения гладкой [по Р '. Кристину):
/ — веретеновидные гладкие миоциты; 2 — цитоплазма миоцита; 3 — ядра миоцитов; 4 — плазмолемма; 5 — базальная мембрана; 6 — поверхностные пиноцитозные пузырьки; 7 — межклеточные соединения; 8 — нервное окончание; 9— коллагеновые фибриллы; 10 —микрофиламенты
наступает деполяризация сарколеммы и усиливается приток ионов кальция в саркоплазму. Гладкая мышечная ткань характеризуется спонтанной ритмической активностью вследствие циклически меняющейся активности кальциевых насосов.
Гладкомышечная ткань способна к функциональной гипертрофии. Обладает она в определенной степени и способностью к регенерации (физиологической и репаративной).
Необходимо упомянуть еще о некоторых типах клеток, сходных с гладкомышечными. Это клетки, окружающие секреторные альвеолы экзокринных желез (молочные, потовые, слезные и др.). Их цитоплазма содержит миофиламенты. Поскольку эти клетки не мезенхимного, а эктодермального происхождения, их назвали миоэпигпелиальными клетками (рис. 1.4.19). С железистыми клетками миоэпителиальные клетки связаны десмосомами. Снаружи они покрыты базальной мембраной. Форма миоэпите-лиальных клеток в концевых отделах — отрост-чатая или звездчатая. Эти клетки получили также название корзинчатых, поскольку образуют как бы корзинку, охватывающую железистые клетки.
Помимо миофиламентов эти клетки содержат свойственные эпителиальным клеткам промежуточные филаменты типа цитокератанов. Иммуноцитомическими методами выявляется и свойственный мышечным тканям промежуточный филамент — десмин.
Ткани
др. Развивается она из мезенхимы. Правда, в области головы и шеи ее происхождение связывают с эктомезенхимой (см. главу 5).
Основным структурным компонентом поперечнополосатой мышцы является поперечнополосатое мышечное волокно (рис. 1.4.20).
Длина волокон в зависимости от типа мышцы довольно разнообразна и колеблется от нескольких миллиметров до нескольких десятков сантиметров. Диаметр также различен (12—70 мкм).
Мышечное волокно снаружи покрыто цито-плазматической оболочкой (сарколеммой) и состоит из цитоплазмы (саркоплазмы), в которой видно множество ядер овальной формы, располагающихся по периферии волокна под сарколеммой и ориентированных параллельно ей (рис. 1.4.21).
Саркоплазма содержит многочисленные органоиды—саркоплазматический ретикулум, митохондрии и свободные рибосомы, расположенные вблизи сарколеммы, а также зерна гликогена. Для саркоплазмы характерно наличие специфического растворимого пигментированного белка — миоглобина, близкого по строению к гемоглобину эритроцитов.
Рис. 1.4.19. Миоэпителиоциты:
а — миоэпителиоциты альвеолярно-трубчатой железы (/ — миоэпителиоциты; 2 — эпителий железы; 3 — просвет железы); б — схема расположения тел и отростков миоэпителиоцитов (/— тела клеток; 2 — отростки клеток, охватывающие снаружи железу)
Другой тип клеток обнаруживается в стенках семенных канальцев яичка — миоидные клетки.
Существуют так называемые эндокринные гладкие миоциты, которые обнаруживаются в виде структурного компонента юкстагломеру-лярного аппарата почек, входя в состав стенки артериол почечного тельца. Эти клетки продуцируют ренин.
Миофибробласты, клетки мезенхимного происхождения, обладающие сократительной функцией, нами описаны выше.
Рис. 1.4.20. Микроскопическое строение поперчнополо-сатой мышечной ткани: а — светооптическое строение поперечнополосатой мышечной ткани (четко видна поперечная исчерченность мышечных во- |
Последний тип сократительных клеток имеет нейроэпителиальное происхождение. Это мионейральные клетки. Поскольку эти клетки обнаруживаются в глазном яблоке, о них подробно будет изложено в соответствующих разделах (см. Радужная оболочка).
Поперечнополосатая мышечная ткань. Поперечнополосатая мышечная ткань (скелетная мышечная ткань) широко распространена в
ппгяничмр R глячнипр R чягтнпгти ич нрр гп ткани (четко видна попеРечная исчерченность мышечных i Организме. В ГЛаЗНИЦе, В ЧаСТНОСТИ, ИЗ Нее СО- ЛОКОН! разделенных прослойками соединительной ткани); б
СТОЯТ Наружные МЫШЦЫ Глаза, МЫШЦЫ Века И большое увеличение мышечного волокна. Строение саркомера
Г л а в а 1. КЛЕТКА И ТКАНИ
той мышцы представлен поперечнополосатыми миофибриллами. Именно они обусловливают поперечную и продольную исчерченность, видимую как в световом, так и электронном микроскопах. Миофибриллы складываются в пучок, расположенный вдоль оси волокна.
Наличие поперечной исчерченности является результатом особой организации миофибрилл и связано с чередованием участков различного химического состава и оптических свойств. Одинаковые участки миофибрилл располагаются на одном уровне, что и приводит к поперечной исчерченности на протяжении всего волокна.
Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных А-дисков (анизотропных, обладающих двойным лучепреломлением в поляризованном свете) и светлых I-дисков (изотропных, не обладающих двойным лучепреломлением). Каждый диск I рассекается надвое тонкой темной Z-ли-нией, называемой также телофрагмой. В середине А-диска определяется светлая зона — полоска Н, через центр которой проходит М-линия— мезофрагма (рис. 1.4.21 —1.4.23).
Миофибриллы |
Саркомер
Миозиновые филаменты |
2,05 мкм |
Z-линия |
Актиновые_ "филаменты
1,06 мкм —»-j 0,05 мкм ■ А-диск---- |
0,15—0,20 мкм
Рис. 1.4.21. Ультраструктурная организация миофиб-риллы:
а — продольный разрез мышечного волокна; б — продольный срез саркомера (по обеим сторонам Z-линий видны половинки слабоокрашенных I-полос, содержащих только тонкие филамен-ты. Эти филаменты тянутся от Z-линий и проходят некоторое расстояние между толстыми филаментами, лежащими в более темной А-полосе. Участки А-полосы содержат как тонкие, так и толстые филаменты и поэтому кажутся более темными, чем та часть, где проходят только толстые филаменты — Н-зона. Через середину А-полосы проходит более темная М-линия); в — поперечный срез миофибриллы (видны тонкие и толстые филаменты. Тонкие филаменты образуют шестиугольную фигуру, в центре которой находится толстый филамент)
Актин
Рис. 1.4.22. Структура саркомера и механизм сокращения филаментов (объяснение в тексте)
Ткани
Рис. 1.4.23. Саркотубулярная структура поперечнополосатого мышечного волокна:
/ — сарколемма; 2 — саркоплазматические трубочки; 3 — Т-тру-бочки
Саркомер (миомер) представляет собой участок миофибриллы, расположенный между двумя телофрагмами (Z-линиями) и включающий А-диск и две половины 1-дисков — по одной половине с каждой стороны. В расслабленной мышце длина саркомера составляет около 2— 3 мкм, а ширина его участков выражается соотношением Н:А:1= 1:3:2. При сокращении мышцы саркомер укорачивается до 1,5 мкм.
Структура саркомера представлена упорядоченной системой толстых и тонких белковых нитей (миофиламентов). Толстые нити (диаметром около 10—12 нм и длиной 1,5—1,6 мкм) связаны с мезофрагмой и сосредоточены в А-диске, а тонкие (диаметром 7—8 нм и длиной 1 мкм) — прикреплены к телофрагмам, образуют 1-диски и частично проникают в А-диски между толстыми нитями (более светлый участок А-диска, свободный от тонких волокон, называется полоской Н). В саркомере насчитывается несколько сотен толстых нитей. По сечению саркомера толстые и тонкие нити располагаются высокоорганизованно в углах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых.
Толстые нити (миофиламенты) образованы упакованными молекулами фибриллярного белка миозина. Молекула миозина имеет вид нити длиной 150 нм и толщиной 2 нм. На одном из концов эта молекула содержит две округлые
головки длиной около 20 нм и шириной около 4 нм. Протеолитическими ферментами миозин расщепляется на легкий меромиозин («стержень» молекулы миозина) и тяжелый меромиозин (участки головок и шейки, связывающей их со стержневой частью). Молекула миозина может сгибаться, как на шарнирах, в месте соединения тяжелого меромиозина с легким в области прикрепления головки. Стержневые части молекул миозина собраны в пучки. Такие пучки, соединенные зеркально концами друг с другом в области М-линии, формируют толстые нити с центральной гладкой частью длиной около 0,2 мкм и двумя периферическими участками, в которых от центрального стержня отходят миозиновые головки (около 500). Миозин головок обладает АТФ-азной активностью, однако в отсутствие его взаимодействия с актином скорость гидролиза АТФ ничтожно мала.
Тонкие нити (миофиламенты) содержат сократимый белок актин и два регуляторных белка — тропонин и тропомиозин. Последние формируют единый тропонин-тропомиозиновый комплекс. Актин в мономерной форме представлен полярными глобулярными белками (G-актин), которые имеют активные центры, способные связываться с молекулами миозина. G-актин агрегирует с образованием полимерного фибриллярного актина (F-актина), молекула которого имеет вид двух скрученных нитей толщиной 7 нм и вариабельной длины.
Тропомиозин представлен нитевидными молекулами, которые соединяются своими концами, образуя длинный тонкий тяж, лежащий в борозде, образуемой перевитыми нитями F-актина. Так как таких борозд на молекуле актина две, то и тропомиозиновых нитей тоже две. Всего в состав тонкой нити входит примерно 50 молекул тропомиозина.
Тропонин представляет собой глобулярный белок. Каждая его молекула располагается на тропомиозиновой молекуле вблизи ее конца. Тропонин состоит из трех субъединиц: ТпС — связывающий кальций, ТпТ — прикрепляющийся к тропомиозину и Tnl — ингибирующий связывание миозина с актином.
Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что тонкие нити вдвигаются в промежутки между толстыми нитями без изменения их длины (рис. 1.4.24). Скольжение нити в саркомере и усилие, развиваемое мышцей, обеспечиваются благодаря циклической активности мио-зиновых мостиков, которые при сокращении повторно прикрепляются к актину, обеспечивают усилие тяги, а затем открепляются от него. В этом механизме АТФ играет двойную роль, обеспечивая энергию, необходимую как для сокращения, так и открепления мостиков.
Глава 1. КЛЕТКА И ТКАНИ
Перимизий
Эндомизий |
Мышца |
Пучок Мышечные фибриллы
Капилляр Эндомизий
--"' М
,--''Н Z \А
_ 7 il as |
Г7' ' ^А"
1Ц iN Миофибрилла
Молекула миозина
Z
I
,-'Саркомер 4-^v
/ L-меромиозин / ', i
Миофиламенты
Н-меромиозин
Миозин |
Актин Тропомиозин Тропонин
Расположение миофиламентов в саркомере
Рис. 1.4.24. Структура поперечнополосатой мышечной ткани от мышцы как анатомического образования до
молекулярного уровня
Строгая пространственная упорядоченность взаимодействия множества толстых и тонких нитей в саркомере определяется наличием сложно организованного поддерживающего аппарата. Его элементы на всех этапах мышечного сокращения и расслабления, динамично перестраиваясь, фиксируют и удерживают миофиламенты в правильном положении, которое оптимальным образом обеспечивает их взаимный контакт, взаимодействие и взаимное скольжение.
Опорный аппарат мышечного волокна включает особые элементы цитоскелета и связанные
с ними сарколемму и базальную мембрану, соединяющие мышечное волокно с сухожилием, на которое передается усилие, развиваемое волокном при сокращении. К опорным элементам мышечного волокна относится телофрагма (Z-линия) (область прикрепления тонких миофиламентов двух соседних саркомеров), мезо-фрагма (М-линия, область закрепления толстых филаментов в саркомере), тинин (коннек-тин, белок с эластическими свойствами, нити которого присоединены к толстым филаментам по всей длине и, продолжаясь на I-диски, прикрепляют концы толстых филаментов к Z-ли-
Ткани
Рис. 1.4.25. Моторные бляшки на поперчнополосатых мышечных волокнах |
ниям), небулин (отвечает за поддержание длины тонких филаментов), промежуточные фи-ламенты (десминсодержащие филаменты, связывающие соседние телофрагмы одной миофиб-риллы, а также прикрепляющие телофрагмы к сарколемме и элементам Т-трубочек), дистро-фин (белок, связывающий сарколемму с компонентами базальной мембраны), костамеры (кольца из белка винкулина, связывающие сарколемму с I-дисками миофибрилл) (рис. 1.4.24). Иннервация мышцы. Каждое мышечное волокно иннервируется концевой веточкой двигательного нейрона. Один мотонейрон, его аксон вместе с иннервируемым мышечным волокном образует нервно-мышечное соединение (рис. 1.4.25, 1.4.26). В месте контакта аксон и его оболочка образуют на поверхности мышечного волокна двигательную концевую пластинку. В этой области между аксоном и сарколеммой образуется синаптическая щель. Си-наптическая щель содержит ацетилхолинэсте-разу, необходимую для инактивации нейромеди-
Рис. 1.4.26. Схема строения нервно-мышечного окончания:
/ — ядро нейролеммоцита; 2 — цитоплазма нейролеммоцита; 3 — плазмолемма нейролеммоцита; 4 — осевой цилиндр нервного волокна; 5 — аксолемма; 6 — постсинаптическая мембрана; 7 — синаптическая щель; 8 — пресинаптичские пузырьки; 9 — пре-синаптическая мембрана (аксолемма); 10 — сарколемма; // — ядро мышечного волокна; 12 — миофибриллы
атора ацетилхолина, высвобождаемого в концевой двигательной пластинке.
В окончаниях аксонов обнаруживается множество синаптических пузырьков, содержащих ацетилхолин. Волна деполяризации приводит к высвобождению ацетилхолина путем эн-доцитоза в синаптическую щель. В результате происходит снижение потенциала покоя сарколеммы и возникает волна деполяризации, распространяющаяся от концевой пластинки по всей саркоплазме. Волна деполяризации достигает саркоплазматического ретикулума, который, в свою очередь, управляет мышечным сокращением.
Скелетные мышцы снабжены не только эфферентными (двигательными), но и афферентными (чувствительными) нервными волокнами, с помощью которых они передают мозгу информацию о степени своего сокращения.
Мышца как анатомическое образование. Снаружи мышца покрыта плотной волокнистой соединительной тканью — эпимизием (рис. 1.4.27). От эпимизия в глубь мышцы отходят соединительнотканные перегородки, содержащие большое количество капиллярных кровеносных сосудов — перимизий. В перемизии располагаются также лимфатические сосуды и нервные волокна. От перемизия отходят тонкие прослойки соединительной ткани, содержащей
Рис. 1.4.27. Схематическое изображение мышцы как органа (по В. Г. Елисееву и соавт., 1972):
1 — мышечные волокна; 2 — ядра; 3 — миофибриллы; 4 — сарколемма; 5 — эндомизий; 6 — кровеносные капилляры; 7 — сухожильная нить; 8 — вегетативное нервное волокно; 9 — двигательное нервное волокно; 10 — аксоно-мышечный синапс
Глава 1. КЛЕТКА И ТКАНИ
фибробласты, немного межклеточного вещества и редкие коллагеновые волокна. Эта ткань образует сеть вокруг отдельных мышечных волокон и называется эндомизием. На обоих концах мышцы соединительнотканные элементы продолжаются и смешиваются с плотной соединительной тканью, прикрепляющей мышцу к той структуре, к которой должно быть приложено тянущее усилие. Это может быть как костная, так и соединительная ткань (апоневроз, шов, надкостница, плотная соединительная ткань кожи и др.). При присоединении к кости формируется сухожилие.
Типы мышечных волокон. В различных участках организма мышечные волокна могут довольно существенно отличаться строением и функцией. Условно выделяют три типа мышечных волокон: тип I (красные), тип ИВ (белые) и тип ПА (промежуточные).
Мышцы типа I характеризуются малым диаметром, относительно тонкими миофибриллами, высокой активностью окислительных ферментов, низкой активностью гидролитических ферментов и миозиновой АТФ-азы, преобладанием аэробных процессов, высоким содержанием миоглобина, крупных митохондрий, интенсивным кровоснабжением. Основным отличием этих волокон в функциональном отношении является их способность к длительным тоническим сокращениям с небольшой силой сокращения.
Мышечные волокна типа ПВ характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гидролитических ферментов, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, низким содержанием митохондрий, липидов и миоглобина. Подобные волокна выполняют быстрые сокращения большой мощности. Они быстро утомляются.
Мышечные волокна ПА типа напоминают волокна I типа. В функциональном отношении они занимают промежуточное положение между вышеописанными волокнами.
В мышцах определяется различное соотношение волокон разного типа. Свойственно это и наружным мышцам глаза.
Регенерация мышечной ткани. Поперечнополосатая мышечная ткань регенерирует на протяжении всей жизни (физиологическая регенерация). При этом происходит самообновление органоидов и других структурных компонентов.
Репаративная регенерация мышечных волокон направлена на восстановление их целостности после повреждения. При любых видах травмы процесс регенерации включает ряд последовательных процессов.
На первом этапе происходит инфильтрация поврежденного участка фагоцитами (нейтро-фильные гранулоциты и макрофаги). Миграция происходит в область повреждения под хемо-
таксическим действием продуктов, выделяемых травмированными волокнами. Фагоциты поглощают тканевой детрит. Параллельно происходит восстановление целостности сосудов (ре-васкуляризация).
Следующий этап сводится к пролиферации миогенных клеток-предшественников (миоса-теллициты), которые сливаются с формированием мышечных трубочек. В последующем происходит дифференцировка трубочек с образованием зрелых мышечных волокон. Завершает процесс восстановление иннервации мышцы.
Полноценная регенерация поперечнополосатой мышечной ткани возможна лишь при незначительных дефектах. Необходимым условием регенерации является сохранение базальной мембраны, служащей барьером для проникновения клеток фибробластического ряда в поврежденное волокно. Базальная мембрана также играет роль направляющей, поддерживающей и ориентирующей структуры для мигрирующих миосателлицитов и для формирующихся мышечных трубочек. Неполноценная регенерация наступает при обширных повреждениях. Полноценной регенерации в этих случаях обычно препятствует разрастание соединительной ткани эндо- и перимизия. Поврежденная мышца замещается соединительнотканным рубцом.
В последние годы разработаны методы использования миосателлицитов для стимуляции регенерации мышечной ткани путем введения взвеси клеток в регенерирующую мышцу.
Дата добавления: 2015-10-21; просмотров: 83 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Костная ткань | | | Нервная ткань |