Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Определение 1.7 Случайной величиной называется такая переменная Х, которая в результате эксперимента принимает единственное значение для каждого элемента генеральной совокупности.

Читайте также:
  1. I. ПРОИСХОЖДЕНИЕ И ЗНАЧЕНИЕ ИМЕНИ
  2. I. ПРЯМОЕ ЗНАЧЕНИЕ
  3. I. ПРЯМОЕ ЗНАЧЕНИЕ
  4. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  5. III. ОСОБОЕ ЗНАЧЕНИЕ ПЕРВОРОДНЫХ СЫНОВЕЙ У ИЗРАИЛЬТЯН
  6. IV. ЗНАЧЕНИЕ
  7. IV. ЗНАЧЕНИЕ ОБЕИХ СИСТЕМ. ЙОГИ С ТОЧКИ ЗРЕНИЯ ПСИХОЛОГИИ И ФИЗИОЛОГИИ

Таким образом, случайная величина Х является числовой функцией, определенной на множестве элементов генеральной совокупности. Значения случайной величины зависят от многих случайных факторов и выясняются только по завершении опыта.

Подчеркнем, что множество значений случайной величины Х само является генеральной совокупностью, а любая случайная выборка из генеральной совокупности отождествляется с определенным подмножеством значений случайной величины Х, полученных в результате конечной серии наблюдений. Такая замена реальных объектов числовыми значениями дает возможность для развития и широкого использования аналитических методов математической статистики.

В теории вероятностей и математической статистике принято выделять одномерные и многомерные случайные величины. При исследовании только одного свойства генеральной совокупности результат единичного эксперимента характеризуется одним числовым значением, и соответствующая случайная величина считается одномерной. Если же результат эксперимента характеризуется несколькими числовыми значениями, то соответствующая случайная величина называется многомерной. Далее мы будем рассматривать только одномерные случайные величины.

 

Определение 1.8Случайная величина, имеющая конечное или счетное число значений, называется дискретной.

Полное описание любой случайной дискретной величины включает в себя перечисление не только множества ее возможных значений, но и соответствующих вероятностей этих значений.

Пример 1.2 Два стрелка делают по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,7, а для второго – 0,9. Обозначим через Х число попаданий в мишень.

Очевидно, что случайная величина Х может принимать три значения: 0, 1, 2. Вычислим вероятность каждого возможного значения:

Р(Х = 0) = 0,3 · 0,1 = 0,03

Р(Х = 1) = 0,7 · 0,1 + 0,3 ∙ 0,9 = 0,34

Р(Х = 2) = 0,7 · 0,9 = 0,63

Занесем все значения случайной величины Х и соответствующие вероятности в следующую таблицу.

Таблица 1.1 – Распределение вероятностей числа попаданий в мишень

Х      
Р 0,03 0,34 0,63

Определение 1.9Совокупность всех возможных значений дискретной случайной величины Х и соответствующих им вероятностей называется законом распределения вероятностей случайной величины.

Более кратко закон распределения вероятностей называют просто распределением случайной величины Х. Часто распределение вероятностей задается таблицей, содержащей все возможные значения случайной величины Х и соответствующие вероятности этих значений.

Таблица 1.2 – Закон распределения вероятностей случайной дискретной величины Х

Х х 1 х 2 хn
Р р1 р2 р n

 

Очевидно, что сумма вероятностей всех возможных значений дискретной случайной величины Х равна 1:

р1 + р2 + … + р n + … = 1.

Это свойство называется условием нормированности распределения.

Однако более удобно закон распределения вероятностей дискретной случайной величины выражать некоторой функцией, позволяющей найти вероятность реализации каждого конкретного значения случайной величины Х.

 

Пример 1.3 Монета бросается семь раз. Обозначим через Х число появлений герба. Найдем закон распределения случайной величины Х.

Очевидно, что случайная величина Х может принимать следующие значения: 0, 1, 2, 3, 4, 5, 6, 7. При этом вероятность того, что значение переменной Х равно k вычисляется по формуле Бернулли:

P(Х = k) = P7(k) = С7 k (0,5) k (0,5)7- k,

где k = 0, 1, 2, 3, 4, 5, 6, 7. Данная функция полностью определяет распределение вероятностей случайной величины Х.

В некоторых случаях используется графическое изображение закона распределения вероятностей случайной величины. Для этого на оси абсцисс отмечаются все значения случайной величины х 1, х 2, …, хn, а на оси ординат откладываются соответствующие вероятности р1, р2, …, р n. Затем точки с координатами (х 1; р1), (х 2; р2), …, (хn; р n) последовательно соединяются отрезками. Полученная ломаная линия называется многоугольником распределения вероятностей.

Графическое изображение закона распределения позволяет получить визуальное представление об исследуемой зависимости. С помощью графика можно заметить основные тенденции варьирования значений случайной величины. Особенно полезны графики в тех случаях, когда нужно показать постоянство некоторых характеристик закона распределения.

Пример 1.4 Построим многоугольник распределения вероятностей для случайной величины Х по данным предыдущего примера 1.3.

Прежде всего, вычислим вероятность каждого возможного значения:

р0 = Р(Х = 0) = С70 (0,5)0 (0,5)7 = 0,0078125

р1= Р(Х = 1) = С71 (0,5)1 (0,5)6 = 0,0546875

р2 = Р(Х= 2) = С72 (0,5)2 (0,5)5 = 0,1640625

р3 = Р(Х= 3) = С73 (0,5)3 (0,5)4 = 0,2734375

р4 = Р(Х = 4) = С74 (0,5)4 (0,5)3 = 0,2734375

р5 = Р(Х = 5) = С75 (0,5)5 (0,5)2 = 0,1640625

р6 = Р(Х = 6) = С76 (0,5)6 (0,5)1 = 0,0546875

р7 = Р(Х = 7) = С77 (0,5)7 (0,5)0 = 0,0078125

Проверка показывает, что сумма вероятностей всех значений равна 1.

Округлим значения вероятностей:

р0 = 0,008 р1 = 0,055 р2 = 0,164 р3 = 0,273
р4 = 0,273 р5 = 0,164 р6 = 0,055 р7 = 0,008

Выполним построение многоугольника распределения вероятностей.

y

Рисунок 1.1 – Многоугольник распределения вероятностей

для числа появления герба при семикратном бросании монеты


Дата добавления: 2015-10-21; просмотров: 108 | Нарушение авторских прав


Читайте в этой же книге: УДК 519.22(075.8) | Математическая статистика является наукой о методах систематизации, анализа и интерпретации статистических данных. | Определение 1.1 Генеральной совокупностью называется множество, состоящее из всех однородных элементов, которые подлежат исследованию относительно определенного свойства. | Плотность распределения вероятностей | Группировка статистических данных | Алгоритм построения статистического ряда | Полученные результаты заносятся в таблицу представляющую статистический ряд. | Графическое представление статистических данных | Эмпирическая функция распределения | Упражнения |
<== предыдущая страница | следующая страница ==>
Сбор статистических данных| Функция распределения случайной величины

mybiblioteka.su - 2015-2024 год. (0.009 сек.)