Читайте также:
|
|
Локальная теорема Муавра-Лапласа. Если вероятность появления события А в каждом из n независимых испытаний равна одной и той же постоянной р =const (0< р <1), то вероятность того, что во всех этих испытаниях событие А появится ровно k раз, приближенно вычисляется формулой:
, (4.8)
где: , -- кривая Гаусса.
Таблицы значений функции даны в приложениях к учебникам по теории вероятностей
Интегральная теорема Муавра-Лапласа. Пусть вероятность появления события А в каждом из n (n →∞)независимых испытаний равна одной и той же постоянной р (0< р <1), то вероятность того, что во всех этих испытаниях событие А появится не менее k 1 и не более k 2 раз, приближенно вычисляется формулой:
, (4.9)
где
- функция Лапласа,
,
Значения аргументов функции Лапласа для х Î[0,5] даны в приложениях к учебникам по теории вероятностей (Приложение 2 настоящего методического пособия), для x>5 F(x)=1/2.Функция нечетная - F(x)= F(-x).
Формула Бернулли требует громоздких расчетов при большом количестве испытаний. Можно получить более удобную для расчетов приближенную формулу, если при большом числе испытаний вероятность появления А в одном опыте мала, а произведение пр = λ сохраняет постоянное значение для разных серий опытов (то есть среднее число появле-ний события А в разных сериях испытаний остается неизменным). Применим формулу Бернулли:
Найдем предел полученного выражения при
Таким образом, формула Пуассона
(3.4)
позволяет найти вероятность к появлений события А для массовых (п велико) и редких (р мало) событий.
Дата добавления: 2015-10-21; просмотров: 94 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Вероятность хотя бы одного события | | | Дискретные случайные величины |