Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Journal of Industrial and Engineering

Читайте также:
  1. Ask questions about what these people are going to be. Use these words: musician / actor / secretary / businesswoman / doctor / journalist
  2. Aux armes, journalistes!
  3. Civil Engineering
  4. Concentration of agricultural production and translation of him are on industrial basis
  5. Development of specialization of agricultural production is on the base of between economic co-operation and agro industrial integration.
  6. Engineering as a Profession
  7. ENGINEERING AS A PROFESSION

Chemistry, 1953; 45: 2483–2490.

25 Schelosky, N., T. Roder, T. Baldinger,

Molmassenverteilung cellulosischer

Produkte mittels Grossenausschlu.chromatographie

in DMAc/LiCl.

Papier, 1999; 53(12): 728–738.

26 Chen, S.-L., L.A. Lucia, Fundamental

insight into the mechanism of oxygen

delignification of kraft pulps. II. Application

of surfactants. Cellulose Chem.

Technol., 2002; 36(5–6): 495–505.

27 Heiningen, A.V., et al., A chemical reactor

analysis of industrial oxygen delignification.

Pulp Paper Can., 2003; 104(12):

T331–T336.

28 Rewatkar, V.B., V.P.J. Bennington, Gasliquid

mass transfer in pulp retention

towers. In TAPPI International Pulp

Bleaching Conference, 2002.

29 Rewatkar, V.B., V.P.J. Bennington, Gasliquid

mass transfer in low and medium

consistency pulp suspensions. Can. J.

Chem. Eng., 2000; 78: 504–512.

30 Broden, A., R. Simonson, Solubility of

oxygen. Part 2. Solubility of oxygen in

sodium hydrogen carbonate and

sodium hydroxide solutions at temperatures

<150 °C and pressures <5 MPa.

Svensk. Papperstidn., 1979; 16: 487–491.

31 Hornsey, D., A. Perkins, J. Davidson. In

TAPPI Annual Meeting Proceedings.

Atlanta, GA, 1989; p. 55.

32 Violette, S., A.v. Heiningen. Selectivity

optimization of extended alkali oxygen

delignification. In Tappi Pulping Conference,

2003.

33 McDonough, T.J., Oxygen delignification.

In Pulp bleaching, principles and

practice, C.W. Dence, D.W. Reeve, Eds.

Chapter 1. TAPPI Press: Atlanta, GA,

USA, 1996.

34 Broden, A., R. Simonson, Solubility of

oxygen. Part 2. Solubility of oxygen in

sodium hydrogen carbonate and

sodium hydroxide solution at temperatures

below 150 °C and pressures below

5 MPa. Svensk. Papperstidn., 1979 (16):

487–491.

35 Ecker, A., H. Sixta, Modelling of Oxygen

Delignification of Sulfite Dissolving

Pulp. R&D Lenzing AG: Lenzing, 2004:

15.

36 Bouchard, J., et al., Determination of

oxygen penetration rate in medium-consistency

kraft pulps. In 2003 Pulping

Conference. TAPPI, 2003.

References 911

37 Axegard, P., B. Backlund, Ecocyclic Pulp

Mill – “KAM”. Final report, 1996–2002.

STFI, Swedish Pulp and Paper Research

Institute: Stockholm, Sweden, 2003.

38 Bennington, C.P.J., I. Pineault, Mass

transfer in oxygen delignification systems:

mill survey results, analysis and

interpretation. Pulp Pap. Can., 1999;

100(12): T395–T402.

39 Johansson, E., The effect of oxygen on

the degradation of lignin model compounds

and residual lignin. PhD-Thesis,

In Department of Pulp and Paper

Chemistry and Technology. Royal Institute

of Technology: Stockholm, 1997.

40 Kleppe, P., H.-M. Chang, R. Eckert,

Delignification of high-yield pulp with

oxygen and alkali. I. preliminary studies

on Southern Pines. Pulp Paper Mag.

Can., 1972; 73(12): 102–106.

41 Hartler, N., H. Norrstrom, S. Rydin,

Oxygen-alkali bleaching of sulphate

pulp. Svensk. Papperstidn., 1970; 73(21):

696–703.

42 Barroca, M.J.M.C., et al., Selectivity

studies of oxygen and chlorine dioxide

in the pre-delignification stages of a

hardwood pulp bleaching plant. Ind.

Eng. Chem. Res., 2001; 40: 5680–5685.

43 Kratzl, K., J.S. Gratzl, P. Claus, Formation

and degradation of biphenyl structures

during alkaline oxidation of phenols

with oxygen. Adv. Chemistry Series,

1966; 59: 157–176.

44 Chang, H.-M., et al., Delignification of

high-yield southern pine soda pulps

with oxygen and alkali. Effects of temperature

and alkali charge. Tappi, 1973;

56(9): 116–119.

45 Kamyr, sales literature, publicly available,

1983.

46 Bennington, C.P.J., I. Pineault, Mass

transfer in oxygen delignification systems:

mill survey results, analysis and

interpretation. Pulp Paper Mag. Can.,

1999; 100(12): 123–131.

47 Svensson, J.E., Experiences of the

SAPOXAL-Oxygen bleaching system at

Skutskar mill, Sweden. In Tappi Seminar

Notes, “Oxygen, Ozone and Peroxide

Pulping and Bleaching”, 1978.

48 Jiang, Z.-H., B.v. Lierop, R. Berry, Hexenuronic

acid groups in pulping and

bleaching chemistry. Tappi, 2000; 83(1):

167–175.

49 Tran, A.V., Effect of pH on oxygen

delignification of hardwood kraft pulp.

Pap. Puu, 2001; 83(5): 405–410.

50 Laine, J., P. Stenius, The effect of ECF

and TCF bleaching on the surface

chemical composition of kraft pulps as

determined by ESCA. Nordic Pulp Paper

Res. J., 1996; 11(3): 201–210.

51 Li, K., D.W. Reeve. Lignin adsorption on

wood fibre surfaces. In International

Pulp Bleaching Conference (IPBC).

Portland, Oregon, 2002.

52 Backa, S., M. Ragnar, The importance of

high final pH in the oxygen delignification.

In TAPPI Fall Conference, 2003.

53 Leader, J.P., H.H.K. Lim, G.B. Byrom,

Medium consistency oxygen delignification

in an O (CD) (EO) D bleaching process

for radiata pine kraft pulp. Appita,

1986; 39(6): 451–454.

54 Thompson, N.S., H.M. Corbett, The

effect of oxygen consumption during

bleaching on the properties of a southern

pine kraft pulp. Tappi, 1976; 59(3):

78–80.

55 Berry, R., et al., Recommendations from

computer modeling for improving single

stage oxygen delignification systems.

In 88th PAPTAC Annual meeting,

Montreal, QC, Canada, 2002.

56 McDonough, T.J., Oxygen delignification.

In Pulp Bleaching – Principles and

Practice, C.W. Dence, Reeve, D.W., Eds.

TAPPI Press: Atlanta, GA, USA, 1996.

57 Fuhrmann, F.E., W. Peter, MC-oxygenperoxide

delignification, an economic

alternative. Tappi Proceedings – International

Oxygen Delignification Conference,

1987: 183–189.

58 Salmela, M., R. Alen, Fate of oxygen in

industrial oxygen-alkali delignification

of softwood kraft pulp. Nordic Pulp

Paper Res. J., 2004; 19(1): 97–104.

59 The Bleaching of Pulp (Singh, R.P.,

Ed.), Tappi Press, 3rd Ed., p. 186–206.

60 Elton, E.F., et al., New technology for

medium-consistency oxygen bleaching.

Tappi, 1980; 63(11): 79–82.

61 Seifert, P., E. Elton, V. Magnotta. Engineering

considerations in the design of

oxygen reactors. In TAPPI Annual

meeting proceedings, 1980.

912 7Pulp Bleaching

62 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 4. Removal of manganese from

wood shavings prior to cooking. Nordic

Pulp Paper Res. J., 1998; 13(1): 50–56.

63 Ericsson, B., B.O. Lindgren,

O. Theander, Svensk. Papperstidn., 1971;

74(22): 757–765.

64 Gilbert, A.F., E. Pavlovova,W.H. Rapson,

Mechanism of magnesium retardation

of cellulose degradation during oxygen

bleaching. Tappi, 1973; 56(6): 95–99.

65 Entwistle, D., E.H. Cole, N.S. Wooding,

The autoxidation of alkali cellulose. Part

II. Textile Res. J., 1949; 19(9): 609–624.

66 Entwistle, D., E.H. Cole, N.S. Wooding,

The autoxidation of alkali cellulose. Part

I: An experimental study of the kinetics

of the reaction. Textile Res. J., 1949;

19(9): 527–546.

67 Manouchehri, M., O. Samuelson, Influence

of catalysts and inhibitors upon

the degradation of carbohydrates during

oxygen bleaching. Svensk. Papperstidn.,

1973; 76(13): 486–492.

68 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 3. Ion exchange of softwood kraft

pulp prior to oxygen delignification.

Nordic Pulp Paper Res. J., 1997; 12(2):

80–85.

69 Liden, J., L.-O. Ohman, On the prevention

of Fe- and Mn-catalyzed H2O2

decomposition under bleaching conditions.

J. Pulp Paper Sci., 1998; 24(9):

269–276.

70 Perng, Y.-S., et al., Catalytic oxygen

bleaching of wood pulp with metal porphyrin

and phthalocyanine complexes.

Tappi J., 1994; 77(11): 119–125.

71 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp. IV. Oxidation

of methyl 4-O-ethyl-b-D-glucopyranoside

with Fenton’s reagent: Effects of

pH and oxygen. Holzforschung, 1998;

52(2): 180–184.

72 Ek, M., et al., Study on the selectivity of

bleaching with oxygen-containing species.

Holzforschung, 1989; 43(6):

391–396.

73 Abrahamsson, K., O. Samuelson, Oxygen-

alkali cooking of wood meal. Part V.

Influence of metal compounds and

soaking in acid. Svensk. Papperstidn.,

1975; 78(4): 135–140.

74 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

II. Bleaching pulps previously treated

with oxygen. Assoc. Techn. Ind. Papetiere,

Bull., 1964; 18(4): 166–176.

75 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

I. Improvements obtained by using

a catalyst; optimum conditions in the

oxygen treatment. Assoc. Techn. Ind.

Papetiere, Bull., 1964; 18(4): 151–165.

76 Robert, A., P. Traynard, O. Martin-Borret.

US Patent 3,384,533, 1968.

77 Liden, J., L.-O. Ohman, Redox stabilization

of iron and manganese in the +II

oxidation state by magnesium precipitates

and some anionic polymers. Implications

for the use of oxygen-based

bleaching chemicals. J. Pulp Paper Sci.,

1997; 23(5): J193–J199.

78 Wiklund, L., J. Liden, L.-O. Ohman, Solution

formation between Mn(II) and

Mg(II) hydroxides in alkaline aqueous

solution. Nordic Pulp Pap. Res. J., 2001;

16(3): 240–245.

79 Wiklund, L., J. Liden, L.-O. Ohman, Surface

precipitation of MgCO3 on MnCO3

in aqueous solution at 90 °C. Nordic

Pulp Pap. Res. J., 2001; 16(4): 339–345.

80 Sjolander, C., J. Liden, L.-O. Ohman.

Modelling the distribution of “free”,

complexed and precipitated metal ions

in a pulp suspension using Donnan

equilibria. In Proceedings of 2000 International

Pulp and Bleaching Conference,

2000.

81 Lucia, L.A., R.S. Mereck, Effect of lignin

content and magnesium-to-manganese

ratio on the selectivity of oxygen delignification.

Pure Appl. Chem., 2001; 73(12):

2059–2065.

82 Werner, J., A. Ragauskas, J.-E. Jiang,

Intrinsic metal binding capacity of kraft

lignins. J. Wood Chem. Technol., 2000;

20(2): 133–145.

83 Yang, E., Oxygen delignification. The

role of hydroxyl and superoxide radicals.

In Department of Pulp and Paper

Chemistry and Technology. Royal Institute

of Technology: Stockholm, Sweden,

1995.

References 913

84 Basta, J., et al. In TAPPI Pulping Conference.

Chicago, 1995.

85 Ek, M., et al. In TAPPI Pulping Conference.

San Diego, 1994.

86 Chirat, C., D. Lachenal. In TAPPI Pulping

Conference. Atlanta, 1993.

87 Landucci, L.L., N. Sanyer, Influence of

transition metals in oxygen pulping.

Tappi, 1975; 58(2): 60–63.

88 Gierer, J., F. Imsgard, The reactions of

lignins with oxygen and hydrogen peroxide

in alkaline media. Svensk. Papperstidn.,

1977; 80(16): 510–518.

89 Gellerstedt, G., E.L. Lindfors, Hydrophilic

groups in lignin after oxygen

bleaching. Tappi, 1987; 70(6): 119–122.

90 Sun, Y., D.S. Argyropoulos, Fundamentals

of high-pressure oxygen and lowpressure

oxygen-peroxide (Eop) delignification

of softwood and hardwood kraft

pulps: A comparison. J. Pulp Paper Sci.,

1995; 21(6): J185–J190.

91 Gellerstedt, G., E.L. Lindfors, Structural

changes in lignin during kraft pulping.

Holzforschung, 1984; 38: 151–158.

92 Gellerstedt, G., K. Gustafsson,

E.L. Lindfors, Structural changes in lignin

during oxygen bleaching. Nordic

Pulp Paper Res. J., 1986; 3: 14–17.

93 Lucia, L.A., A.J. Ragauskas, F.S. Chakar,

Comparative evaluation of oxygen

delignification processes for low- and

high-lignin-content softwood kraft

pulps. Ind. Eng. Chem. Res., 2002; 41:

5171–5180.

94 Lai, Y.-Z., M. Funaoka, H.-T. Chen, Oxygen

bleaching of kraft pulp. 1. Role of

condensed units. Holzforschung, 1994;

48(4): 355–359.

95 Asgari, F., D.S. Argyropoulos, Fundamentals

of oxygen delignification. Part

II. Functional group formation/elimination

in residual kraft lignin. Can. J.

Chem., 1998; 76: 1606–1615.

96 Fu, S., L.A. Lucia, Investigation of the

chemical basis for the inefficient lignin

removal in softwood kraft pulp during

oxygen delignification. Ind. Eng. Chem.

Res., 2003; 42: 4269–4276.

97 Chirat, C., D. lachenal. Limits of oxygen

delignification. In TAPPI Pulping Conference.

Atlanta, GA: TAPPI Press,

1998.

98 Roost, C., P. Larsson, G. Gellerstedt,

Reduced brightness variations by

extended oxygen delignification. Nordic

Pulp Paper Res. J., 2000; 15(3): 211–215.

99 Sixta, H. Influence of prehydrolysis on

pulping and bleaching. In Book of

Abstracts, 211th ACS National Meeting.

New Orleans, LA, 1996.

100 Antonsson, S., et al., A comparative

study of the impact of the cooking process

on oxygen delignification. Nordic

Pulp Paper Res. J., 2003; 18(4): 388–394.

101 Zou, H., et al., Effect of hemicellulose

content in kraft brownstock on oxygen

delignification. In TAPPI Fall Conference

and Trade Fair. San Diego, CA:

TAPPI Press, 2002.

102 Akim, L.G., J.L. Colodette,

D.S. Argyropoulos, Factors limiting oxygen

delignification of kraft pulp. In

International Pulp Bleaching Conference.

Halifax, NS, Canada: Pulp and

Paper Technical Association of Canada,

2000.

103 Gellerstedt, G., W.W. Al-Dajani, Some

factors affecting the brightness and

TCF-bleachability of kraft pulps. Nordic

Pulp Paper Res. J., 2003; 18(1): 56–62.

104 Gustavsson, C., K. Sjostrom,

W.W. Al-Dajani, The influence of cooking

conditions on the bleachability and

chemical structure of kraft pulps. Nordic

Pulp Paper Res. J., 1999; 14(1): 71–81.

105 Gellerstedt, G., W.A.-D. W, Bleachability

of alkaline pulps. Part 1. The importance

of beta-aryl ether linkages in lignin.

Holzforschung, 2000; 54(6):

609–617.

106 Roost, C., P. Larsson, G. Gellerstedt,

Brightness and kappa number – important

variables to secure appropriate control

of chemical charges in TCF- and

ECF-bleaching sequences. Nordic Pulp

Paper Res. J., 2000; 15(3): 216–220.

107 Iijima, J.F., H. Taneda, The effect of carryover

on medium-consistency oxygen

delignification of hardwood kraft pulp.

J. Pulp Paper Sci., 1997; 23(12):

J561–J564.

108 Pekkala, O., Some effects of extended

delignification on lignin in kraft cooking.

Pap. Puu, 1985; 67(11): 673–688.

109 Zou, H., et al. Effect of hemicellulose

content in kraft brownstock on oxygen

914 7Pulp Bleaching

delignification. In TAPPI Fall Conference

& Trade Fair, 2002.

110 Violette, S., A.v. Heiningen. Selectivity

improvement during oxygen delignification

by adsorption of polymeric additives.

In 88th Annual Meeting,

PAPTAC, 2001.

111 Ai, V.T., Utilization of additives in oxygen

delignification of hardwood kraft

pulp. Appita, 2000; 53: 300–304.

112 Fu, S., et al., Chemical basis for a selectivity

threshold to the oxygen delignification

of kraft softwood fiber as supported

by the use of chemical selectivity

agents. Ind. Eng. Chem. Res., 2004; 43:

2291–2295.

113 Gratzl, J.S., Abbaureaktionen von Kohlenhydraten

und Lignin durch chlorfreie

Bleichmittel – Mechanismen sowie

Moglichkeiten der Stabilisierung. Das

Papier, 1987; 41(3): 120–130.

114 Ala-Kaila, K., I. Reilama, Step-wise

delignification response in an industrial

two-stage oxygen-alkali delignification

process. Pulp Paper Canada, 2001;

102(6): T170–T172.

115 Ala-Kaila, K., et al., Apparent and actual

delignification response in industrial

oxygen-alkali delignification of birch

kraft pulp. Tappi, 2003; 2(10): 23–27.

116 Li, J., G. Gellerstedt, The contribution to

kappa number from hexenuronic acid

groups in pulp xylan. Carbohydrate Res.,

1997; 302: 213–218.

117 Li, J., O. Sevastyanova, G. Gellerstedt,

The relationship between kappa number

and oxidizable structures in

bleached kraft pulps. J. Pulp Paper Sci.,

2002; 28(8): 262–266.

118 Li, J., G. Gellerstedt, Oxymercurationdemercuration

kappa number: An accurate

estimation of the lignin content in

chemical pulps. Nordic Pulp Paper Res.

J., 2002; 17(4): 410–414.

119 Steffes, F., M. Bokstrom, S. Norden.

Pulp yield improvements using twostage,

extended oxygen delignification.

In Breaking the pulp yield barrier symposium.

Atlanta, GA, 1998.

120 Rolando, C., B. Monties, C. Lapierre,

Thioacidolysis. In Methods in Lignin

Chemistry, C.W.D. S.Y. Lin, Ed. Springer-

Verlag, 1992.

121 Kondo, S. Two-stage oxygen delignification

process and operating experiences.

In Pan-Pacific Pulp & Paper Technology

Conference. Tokyo, Japan, 1992.

122 Backlund, A., Process for oxygen bleaching

using two vertical reactors.

SE-467582, 1990.

123 Sixta, H., A. Borgards, New technology

for the production of high-purity dissolving

pulps. Das Papier, 1999; 53(4):

220–234.

124 Sixta, H., et al., Towards effluent-free

TCF-bleaching of eucalyptus prehydrolysis-

kraft pulp. Das Papier, 1994; 48(8):

526–537.

125 Sixta, H., Zellstoffherstellung unter

Berucksichtigung umweltfreundlicher

Aufschlu.- und Bleichverfahren am

Beispiel von Chemiezellstoffen. Habilitation

Thesis, In Institute for Pulp,

Paper and Fiber Technology. TU Graz:

Graz, 1995: 425.

126 Bokstrom, M., P. Mellander, S. Norden,

Oxygen delignification of lignocellulosic

pulp in two steps. SE-505141, 1997.

127 Bokstrom, M., Y. Lundahl, N.K. Jain,

OxyTrac process. IPPTA, 2002; 14(2):

13–18.

128 Bokstrom, M., S. Norden. Extended oxygen

delignification. In 52nd Appita

Annual General Conference Proceedings,

1998.

129 Bokstrom, M., T. Kobayashi, Extended

oxygen delignification with the OxyTrac

process. KamiPa Gikyoshi, 2000; 54(9):

1214–1222.

130 Saldivia, M.A.G., Two-stage oxygen

delignification system cuts mill’s chemical

use, boosts pulp quality. PaperAge,

2003 (Jan/Feb): 18–24.

131 Dualox – A two-stage oxygen delignification

process (product leaflet). Kvaerner

Pulping: Karlstad, Sweden, 2000.

132 Ragnar, M., A compact way to extend

oxygen delignification. In 7th International

Conference on new available technologies.

Stockholm, Sweden: SPCI,

2002.

133 Aoki, I., Operating experience of twostage

oxygen delignification (DUALOX)

systems. In Japan Tappi Seminar.

Yonugo, Japan, 2001.

References 915

134 Lindstrom, L.-A., Oxygen stage design

and performance. In Tappi Bleach Plant

Operations Short Course, 1991.

135 Bergnor, E., P. Sandstrom, Modified

cooking and oxygen bleaching for

improved production economy and

reduced effluent load. Nordic Pulp Paper

Res. J., 1988; 3(3): 145–155.

136 Gustavsson, R., B. Swan, Tappi, 1975;

58(3): 120–123.

137 Chai, X.-S., Q.X. Hou, J.Y. Zhu, Carboxyl

groups in wood fibers. 2. The fate

of carboxyl groups during alkaline

delignification and its application for

fiber yield prediction in alkaline pulping.

Ind. Eng. Chem. Res., 2003; 42:

5445–5449.

138 Tormund, D., Lindstrom, M. Syrgas

delignifiering med Karbonat som alkalikalla,

STFI report BF 15, 1999, In ‘Ecocyclic

Pulp Mill – “KAM”. Final report,

1996–2002, p. 31 Stockholm, Sweden

(2003), edited by Peter Axegard and Birgit

Bocklund.

Sections 7.4.1–7.4.3

1 Davy, H., On a combination of oxymuriatic

gas and oxygene gas. Phil. Trans.,

1811; 101: 155.

2 Schmidt, E., Ber., 1921; 54: 1860.

3 Schmidt, E., Cellulosechem, 1930; 11: 73.

4 Sodergren, A., et al., Summary of

results from the Swedish project “Environment/

Cellulose”. Water Sci. Technol.,

1988; 20: 49–60.

5 Renberg, L., N.G. Johansson, C. Blom,

Destruction of PCDD and PCDF in

bleached pulp by chlorine dioxide treatment.

Chemosphere, 1995; 30(9):

1805–1811.

6 Gordon, G., R.G. Kieffer,

D.H. Rosenblatt, The chemistry of chlorine

dioxide. Prog. Inorg. Chem., 1972;

15: 201–286.

7 Lenzi, F., W.H. Rapson, Pulp Paper Mag.

Can., 1962; 63: T-442–448.

8 Dodgen, H., H. Taube, The exchange of

chlorine dioxide with chlorite ion and

with chlorine in other oxidation states.

J. Am. Chem. Soc., 1949; 71: 2501–2504.

9 Bray, W.C., Z. Anorg. Allgem. Chem.,

1906; 48: 217–250.

10 Taube, H., H. Dodgen, Application of

radioactive chlorine to the study of the

mechanisms of reactions involving

changes in the oxidation state of chlorine.

J. Am. Chem. Soc., 1949; 71:

3330–3336.

11 Bray, W.C., Z. Physik. Chem., 1906; 54:

569–608.

12 Halperin, J., H. Taube, The transfer of

oxygen atoms in oxidation-reduction

reactions. III. The reaction of halogenates

with sulfite in aqueous solution.

J. Am. Chem. Soc., 1952; 74: 375–380.

13 Fukutomi, H., G. Gordon, Kinetic study

of the reaction between chlorine dioxide

and potassium iodide in aqueous solution.

J. Am. Chem. Soc., 1967; 89(6):

1362–1366.

14 Svenson, D.R., Chlorine dioxide reactions

with lignin model compounds and

kraft pulps. In Department of Wood and

Paper Science. North Caroline State

University: Raleigh, 2001.

15 Kolar, J., B. Lindgren, B. Pettersson,

Wood Sci. Technol., 1983; 17: 117–128.

16 Heijne, G.V., A. Teder, Kinetics of

decomposition of aqueous chlorine

dioxide solutions. Acta Chim. Scand.,

1973; 27: 4018–4019.

17 Svenson, D.R., et al., Effect of pH on

the inorganic species involved in a chlorine

dioxide reaction system. Ind. Eng.

Chem. Res., 2002; 41(24): 5927–5933.

18 Strumila, G., H. Rapson, Chlorine dioxide

bleaching. In The bleaching of pulp,

R. Singh, Ed. TAPPI: Atlanta, GA, 1979:

113.

19 Rapson, W.H., C.B. Anderson, Pulp

Paper Mag. Can., 1966; 67(1): T47–T55.

20 Rapson, W.H., C.B. Anderson,, Improving

the efficiency of chlorine dioxide bleaching.,

1977; 3(2): TR52–TR55.

21 Zabori, M., Production of chlorine dioxide

– the integrated process. Paper,

1991; 10: 20–22.

22 Fredette, M.C., In Bleach Plant Operations,

Short Course. Atlanta: TAPPI

Press, 1990.

23 Stockburger, P., What you need to know

before buying your next chlorine dioxide

plant. Tappi J., 1993; 76(3): 99–104.

916 7Pulp Bleaching

24 Ni, Y., X. Wang, Mechanism of the

methanol-based ClO2 generation process.

J. Pulp Paper Sci., 1997; 23(7):

J346–J352.

25 Hoq, M.F., et al., Oxidation products of

methanol in chlorine dioxide production.

Ind. Eng. Chem. Res., 1992; 31(7):

1807–1810.

26 Yin, G., Y. Ni, Using hydrogen peroxide

in a methanol-based chlorine dioxide

generation process. Ind. Eng. Chem.

Res., 1999; 38(9): 3319–3323.

27 Nonni, A.J., et al., Method for producing

chlorine dioxide using methanol and

hydrogen peroxide as reducing agent.

PCT/US, 1998.


Дата добавления: 2015-10-21; просмотров: 115 | Нарушение авторских прав


Читайте в этой же книге: Hemicelluloses), and the change of the molecular distribution to a narrow, | Temperatures. This explains why the alkali consumption does not correspond | The principal means of producing highly purified dissolving pulp. When applying | Concentrations, using X-ray diffraction. Ranby studied the appearance of cellulose | Appears to be alkali-resistant), the NaOH concentration must be increased from | This explains the different pattern of hemicelluloses removal as compared |
<== предыдущая страница | следующая страница ==>
Symposium on Delignification with Oxygen| Section 7.9

mybiblioteka.su - 2015-2024 год. (0.104 сек.)