Читайте также:
|
|
Ozone and Peroxides. Raleigh, North
Carolina, USA: North Caroline State
University, 1975.
72 Argyropoulos, D.S., Y. Sun, E. Palus,
Isolation of residual kraft lignin in high
yield and purity. J. Pulp Paper Sci., 2002;
28(2): 50–54.
73 Al-Dajani, W.W., G. Gellerstedt, On the
isolation and structure of softwood residual
lignins. Nordic Pulp Paper Res. J.,
2002; 17(2): 193–198.
74 Jaaskelainen, A.S., Y. Sun,
D.S. Argyropoulos, T. Tamminen,
B. Hortling, The effect of isolation
method on the chemical structure of residual
lignin. Wood Sci. Technol., 2003;
37(2): 91–102.
75 Lachenal, D., G. Mortha, R.M. Sevillano,
M. Zaroubine, Isolation of residual lignin
from softwood kraft pulp. Advantages
of the acetic acid acidolysis method.
C. R. Biol., 2004; 327(9–10):
911–916.
76 Capanema, E.A., M.Y. Balakshin,
C.L. Chen, An improved procedure for
isolation of residual lignins from hardwood
kraft pulps. Holzforschung, 2004;
58(5): 464–472.
77 Halttunen, M., J. Vyorykka, B. Hortling,
T. Tamminen, D. Batchelder,
A. Zimmermann, T. Vuorinen, Study of
residual lignin in pulp by UV resonance
Raman spectroscopy. Holzforschung,
2001; 55(6): 631–638.
78 Tamminen, T.L., B.R. Hortling, Isolation
and characterization of residual lignin.
In Advances in Lignocellulosics Char900
7Pulp Bleaching
acterization, D.S. Argyropoulos, Ed.
Tappi Press: Atlanta, GA, 1999: 1–42.
79 Balakshin, M.Y., E.A. Capanema,
C.-L. Chen, H.S. Gracz, Elucidation of
the structures of residual and dissolved
pine kraft lignins using an HMQC
NMR technique. J. Agric. Food Chem.,
2003; 51(21): 6116–6127.
80 Fu, S.Y., L.A. Lucia, Investigation of the
chemical basis for inefficient lignin
removal in softwood kraft pulp during
oxygen delignification. Ind. Eng. Chem.
Res., 2003; 42(19): 4269–4276.
81 Froass, P.M., A.J. Ragauskas, J. Jiang,
Nuclear magnetic resonance studies. 4.
Analysis of residual lignin after kraft
pulping. Ind. Eng. Chem. Res., 1998;
37(8): 3388–3394.
82 Lachenal, D., J.C. Fernandes,
P. Froment, Behavior of residual lignin
in kraft pulp during bleaching. J. Pulp
Paper Sci., 1995; 21(5): J173–J177.
83 Argyropoulos, D.S., Y. Liu, The role and
fate of lignin’s condensed structures
during oxygen delignification. J. Pulp
Paper Sci., 2000; 26(3): 107–113.
84 Froass, P.M., A.J. Ragauskas, J. Jiang,
Chemical structure of residual lignin
from kraft pulp. J. Wood Chem. Technol.,
1996; 16(4): 347–365.
85 Froass, P.M., A.J. Ragauskas, J.E. Jiang,
NMR studies Part 3: Analysis of lignins
from modern kraft pulping technologies.
Holzforschung, 1998; 52(4):
385–390.
86 Capanema, E.A., M.Y. Balakshin,
J.F. Kadla, A comprehensive approach
for quantitative lignin characterization
by NMR spectroscopy. J. Agric. Food
Chem., 2004; 52: 1850–1860.
87 Zhang, L., G. Henriksson, G. Gellerstedt,
The formation of b-b structures in
lignin biosynthesis – Are there two different
pathways? Org. Biomol. Chem.,
2003: 3621–3624.
88 Kishimoto, T., A. Ueki, Y. Sano, Delignification
mechanism during high-boiling
solvent pulping. Part 3. Structural
changes in lignin analyzed by 13C-NMR
spectroscopy. Holzforschung, 2003; 57:
602–610.
89 Kishimoto, T., A. Ueki, H. Takamori,
Y. Uraki, M. Ubukata, Delignification
mechanism during high-boiling solvent
pulping. Part 6. Changes in lignin structure
analyzed by 1H–13C correlation 2-D
NMR spectroscopy. Holzforschung, 2004;
58: 355–362.
90 Northey, R.A., A review of lignin model
compound reactions under oxygen
bleaching conditions. In Oxidative
Delignification Chemistry,
D.S. Argyropoulos, Ed. American
Chemical Society, Oxford University
Press: Washington, DC, 2001; 44–60.
91 Zou, H., J.M. Genco, A. Van Heiningen,
B. Cole, R. Fort, Effect of hemicellulose
content in kraft brownstock on oxygen
delignification. TAPPI Fall technical
Conference and Trade Fair, 2002:
193–209.
92 Saake, B., R. Lehnen, E. Schmekal,
A. Neubauer, H.H. Nimz, Bleaching of
formacell pulp from aspen wood with
ozone and peracetic acid in organic solvents.
Holzforschung, 1998; 52(6):
643–650.
93 Ruiz, J., J. Freer, J. Rodriguez, J. Baeza,
Ozone organosolv bleaching of radiata
pine kraft pulp. Wood Sci. Technol.,
1997; 31(3): 217–223.
94 Fu, S.Y., X.S. Chai, Q.X. Hou, L.A. Lucia,
Chemical basis for a selectivity threshold
to the oxygen delignification of kraft
softwood fiber as supported by the use
of chemical selectivity agents. Ind. Eng.
Chem. Res., 2004; 43(10): 2291–2295.
95 Francis, R.C., Y.Z. Lai, C.W. Dence,
T.C. Alexander, Estimating the concentration
of phenolic hydroxyl-groups in
wood pulps. Tappi J., 1991; 74(9):
219–224.
96 Gellerstedt, G., K. Gustafsson,
R.A. Northey, Nordic Pulp Paper Res. J.,
1988; 3(2): 87–94.
97 Gellerstedt, G., Chemical structure of
pulp components. In Pulp Bleaching:
Principles and Practice, C.W. Dence,
D.W. Reeve, Eds. Tappi Press: Atlanta,
GA, 1996: 91–111.
98 Asgari, F., D.S. Argyropoulos, Fundamentals
of oxygen delignification. Part
II. Functional group formation elimination
in residual kraft lignin. Can. J.
Chem.-Rev. Canadienne De Chimie, 1998;
76(11): 1606–1615.
99 Yokoyama, T., Y. Matsumoto,
G. Meshitsuka, Reaction selectivity of
References 901
active oxygen species in oxygen-alkali
bleaching. J. Wood Chem. Technol., 1999;
19(3): 187–202.
100 Johansson, E., S. Ljunggren, The
kinetics of lignin reactions during oxygen
bleaching. 4. The reactivities of different
lignin model compounds and the
influence of metal-ions on the rate of
degradation. J. Wood Chem. Technol.,
1994; 14(4): 507–525.
101 Kratzl, K., P. Claus, W. Lonsky,
J.S. Gratzl, Model studies on reactions
occurring in oxidations of lignin with
molecular-oxygen in alkaline media.
Wood Sci. Technol., 1974; 8(1): 35–49.
102 Sultanov, V.S., A.F.A. Wallis, Reactivities
of guaiacyl and syringyl lignin model
phenols towards oxidation with oxygenalkali.
J. Wood Chem. Technol., 1991;
11(3): 291–305.
103 Evtuguin, D.V., D. Robert, The detection
of muconic acid type structures in oxidized
lignins by C-13 NMR spectroscopy.
Wood Sci. Technol., 1997; 31(6):
423–431.
104 Moe, S.T., A.J. Ragauskas, Oxygen
delignification of high-yield kraft pulp
part I: Structural properties of residual
lignins. Holzforschung, 1999; 53(4):
416–422.
105 Duarte, A.P., D. Robert, D. Lachenal,
Eucalyptus globulus kraft pulp residual
lignin Part 2. Modification of residual
lignin structure in oxygen bleaching.
Holzforschung, 2001; 55(6): 645–651.
106 Lai, Y.Z., H. Xu, R. Yang. In Lignin: Historical,
Biological, and Materials Perspectives,
W.G. Glasser, R.A. Northey and
T.P. Schultz, Eds. American Chemical
Society, Oxford University Press:
Washington D.C, 2000.
107 Ede, R.M., G. Brunow, L.K. Simola,
J. Lemmetyinen, 2-Dimensional
H-1-H-1 chemical-shift correlation and
J-resolved NMR studies on isolated and
synthetic lignins. Holzforschung, 1990;
44(2): 95–101.
108 Lundquist, K., Nordic Pulp Paper Res. J.,
1992; 7(1): 4–8, 16.
109 Ede, R.M., R. Smit, I.D. Suckling. Oral
Presentation. In 9th International Symposium
of Wood and Pulping Chemistry.
Montreal, 1997.
110 Adler, E., Lignin chemistry – past, present
and future. Wood Sci. Technol., 1977;
11(3): 169–218.
111 Zhang, L., G. Gellerstedt. Detection and
determination of carbonyls and quinones
by modern NMR techniques. In
10th International Symposium of Wood
and Pulping Chemistry. Yokohama,
1999.
112 Drumond, M., M. Aoyama, C.L. Chen,
D. Robert, Substituent effects on C-13
chemical-shifts of aromatic carbons in
biphenyl type lignin model compounds.
J. Wood Chem. Technol., 1989; 9(4):
421–441.
113 Ahvazi, B.C., G. Pageau,
D.S. Argyropoulos, On the formation of
diphenylmethane structures in lignin
under kraft, EMCC (R), and soda pulping
conditions. Can. J. Chem. – Rev.
Canadienne De Chimie, 1998; 76(5):
506–512.
114 Chang, H.-M., H.T. Chen, J.S. Gratzl,
S. Hosoya, T. Yamasaki. In SPCI International
Symposium of Wood and Pulping
Chemistry. Stockholm, 1981.
115 Chiang, V.L., M. Funaoka, The dissolution
and condensation-reactions of
guaiacyl and syringyl units in residual
lignin during kraft delignification of
sweetgum. Holzforschung, 1990; 44(2):
147–156.
116 Hartler, N., H. Norrstrom, Light-absorbing
properties of pulp and pulp components.
3. Kraft pulp. Tappi, 1969; 52(9):
1712–1715.
117 Gellerstedt, G., J. Pranda, E.L. Lindfors,
Structural and molecular-properties of
residual birch kraft lignins. J. Wood
Chem. Technol., 1994; 14(4): 467–482.
118 Johansson, E., S. Ljunggren, Nordic
Pulp Paper Res. J., 1990; 5(3): 148–154.
119 Ljunggren, S., E. Johansson, The
kinetics of lignin reactions during oxygen
bleaching. 3. The reactivity of
4-N-propylguaiacol and 4,4′-di-N-propyl-
6,6′-biguaiacol. Holzforschung, 1990;
44(4): 291–296.
120 Omori, S., C.W. Dence, The reactions of
alkaline hydrogen-peroxide with lignin
model dimers. 1. Phenacyl alpha-aryl
ethers. Wood Sci. Technol., 1981; 15(1):
67–79.
902 7Pulp Bleaching
121 Dence, C.W., A.J. Nonni. Technical
Papers. In International Symposium of
Wood and Pulping Chemistry. Vancouver,
1985.
122 Aoyagi, T., S. Hosoya, J. Nakano, A new
reaction site in lignin during O2-alkali
treatment. J. Japan Wood Res. Soc.
(Mokuzai Gakkaishi), 1979; 25(12):
783–788.
123 Oki, T., H. Ishikawa, K. Okubo, Oxidative
Degradation of Dihydrodehydrodiisoeugenol
and its methyl derivative by
peroxide and oxygen alkali methods.
Дата добавления: 2015-10-21; просмотров: 109 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
General Principles | | | Journal of Industrial and Engineering |