Читайте также:
|
|
Для верификации (проверки) истинности высказываний формальная логика дублируется математической путем составления всевозможных таблиц. Например, высказывание «a» и его отрицание «не- a» дает таблицу истинности:
a | a |
И | Л |
Л | И |
Где «И» означает «истина», «Л» – «ложь».
Означающую что, если «a» истинно, то «a» ложно и наоборот.
В общем случае таблица составляется таким образом: Под последней частью высказывания (здесь «b») пишется друг за другом И, Л, И, Л, … и т. д., в предыдущем столбце, количество идущих подряд оценок удваивается (И, И, Л, Л, … и т. д.). И так в каждом предыдущем (если они есть) одинаковых оценок, идущих подряд в два раза больше чем в следующем. Количество строк определяется отношением Z=2n, где n – количество переменных (в данном случае два: «a» и «b»). Таким образом учитываются все возможные сочетания истинности и ложности. Простое составление (конъюнкция ) a и b истинно, если истинны обе составных части a и b. Поэтому во второй строке третьего столбца ставится «И». Подобные операции проделываются и дальше. Таблица позволяет определить что, сочетание (конъюнкция) истинно, когда все его части истины; строгое разделение (дизинъюнкция) – когда истинна только одна; нестрогое – когда истинна хотя бы одна и т. д. Существуют тождественно-истинные формулы, при любом значении переменных дающие истинные значения. Эти формулы являются правилами формальной логики.
a | b | a b | a V b | a b | a → b | a ≡ b |
И | И | И | И | Л | И | И |
И | Л | Л | И | И | Л | Л |
Л | И | Л | И | И | И | Л |
Л | Л | Л | Л | Л | И | И |
Исчислению подлежат все высказывания, как простые, так и сложные.
Дата добавления: 2015-09-06; просмотров: 114 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Сравнимость суждений | | | Правило эквивалентности. |