Читайте также: |
|
Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит и, любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизинъюнктивные, импликационные, эквивалентные и отрицательные.
Дизинъюнктивные суждения образуются с помощью разделительных (дизинъюнктивных) логических связок аналогичных союзу «или». Подобно простым разделительным суждениям бывают нестрогими (нестрогая дизинъюнкция), члены которой допускают совместное сосуществование (толи…, толи…), записывающимися a V b; и строгими (Строгая дизинъюнкция) члены которой исключают друг друга (либо одно, либо другое), записывающимися a b (с точкой над V).
Импликационные суждения образуются с помощью импликации, эквивалентной союзу «если …, то» и записываются a → b или a b, хотя в естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня не одной тучи») и, в таком случае, означает конъюнкцию.
Конъюнктивные суждения образуются с помощью логических связок сочетания (конъюнкции) эквивалентной запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим, обозначаемых знаком «». Что в математической логике записывается как (a b).
Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если только», «необходимо», «достаточно» (например: «Чтобы число делилось на 3, достаточно чтобы, сумма цифр, его составляющих, делилась на 3»), и записывается a ≡ b; a ↔ b; a b (у разных математиков по-разному, хотя математический знак тождества все-таки ≡).
Отрицательные суждения строятся с помощью связок «не» и записываются либо a ~ b, либо a b при внутреннем отрицании типа «машина не роскошь», и с помощью черты над всем суждением при внешнем отрицании (опровержении) «не верно что …» (a b).
Дата добавления: 2015-09-06; просмотров: 119 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
S есть P | | | Сравнимость суждений |