Читайте также:
|
|
– Сложение (+) x + y
– Вычитание (-) x – y
– Умножение (*) x * y
– Деление (/) x / y
– Абсолютное значение (abs(x)) abs (x)
– Синус, косинус sin(x), cos(x) sin (x), cos(x) и другие тригонометрические функции имеют обычную математическую запись.
– Логарифмы ln(x), log(x), ln (x), log (x)
– Степень xy – pow(x,y)
– Корень sqrt(x), sqrt (x)
Пример.
// VerilogA for CMP100v6Test, OpAmp, veriloga
`include "constants.vams"
`include "disciplines.vams"
`define PI 3.14159265358979323846264338327950288419716939937511
//--------------------
// opamp
//
// – operational amplifier
//
// vin_p,vin_n: differential input voltage [V,A]
// vout: output voltage [V,A]
// vref: reference voltage [V,A]
// vspply_p: positive supply voltage [V,A]
// vspply_n: negative supply voltage [V,A]
//
// INSTANCE parameters
// gain = gain []
// freq_unitygain = unity gain frequency [Hz]
// rin = input resistance [Ohms]
// vin_offset = input offset voltage referred to negative [V]
// ibias = input current [A]
// iin_max = maximum current [A]
// slew_rate = slew rate [A/F]
// rout = output resistance [Ohms]
// vsoft = soft output limiting value [V]
//
// MODEL parameters
// {none}
//
module OpAmp(vout, vref, vin_p, vin_n);
input vref;
inout vout, vin_p, vin_n;
electrical vout, vref, vin_p, vin_n, vspply_p, vspply_n;
parameter real gain = 40;
parameter real freq_unitygain = 1.0e6;
parameter real rin = 1e6;
parameter real vin_offset = 0.0;
parameter real ibias = 0.0;
parameter real iin_max = 100e-6;
parameter real slew_rate = 0.5e6;
parameter real rout = 80;
parameter real vsoft = 0.5;
parameter real vspply_p = 3.3;
parameter real vspply_n = 0;
real c1;
real gm_nom;
real r1;
real vmax_in;
real vin_val;
electrical cout;
analog begin
@ (initial_step or initial_step("dc")) begin
c1 = iin_max/(slew_rate);
gm_nom = 2 * `PI * freq_unitygain * c1;
r1 = gain/gm_nom;
vmax_in = iin_max/gm_nom;
end
vin_val = V(vin_p,vin_n) + vin_offset;
//
// Input stage.
//
I(vin_p, vin_n) <+ (V(vin_p, vin_n) + vin_offset)/ rin;
I(vref, vin_p) <+ ibias;
I(vref, vin_n) <+ ibias;
//
// GM stage with slewing
//
I(vref, cout) <+ V(vref, cout)/100e6;
if (vin_val > vmax_in)
I(vref, cout) <+ iin_max;
else if (vin_val < -vmax_in)
I(vref, cout) <+ -iin_max;
else
I(vref, cout) <+ gm_nom*vin_val;
//
// Dominant Pole.
//
I(cout, vref) <+ ddt(c1*V(cout, vref));
I(cout, vref) <+ V(cout, vref)/r1;
//
// Output Stage.
//
I(vref, vout) <+ V(cout, vref)/rout;
I(vout, vref) <+ V(vout, vref)/rout;
//
// Soft Output Limiting.
//
if (V(vout) > (V(vspply_p) – vsoft))
I(cout, vref) <+ gm_nom*(V(vout, vspply_p)+vsoft);
else if (V(vout) < (V(vspply_n) + vsoft))
I(cout, vref) <+ gm_nom*(V(vout, vspply_n)-vsoft);
end
endmodule
Глава 8. Защита микросхем от электростатического разряда
Возникновение электростатических разрядов и их действие
Дата добавления: 2015-10-13; просмотров: 95 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Аналоговые операторы. | | | На микросхемы |