Читайте также:
|
|
Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты из рабочих мышц, крови и тканевой жидкости требуется 60—90 мин в условиях полного покоя — сидя или лежа (пассивное восстановление). Однако если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность «восстанавливающей» нагрузки — примерно 30—45% от МПК (например, бег трусцой), а у хорошо тренированных спортсменов — 50—60% от МПК, общей продолжительностью примерно 20 мин (рис. 2).
Рис. 2. Уменьшение концентрации лактата
в крови в период восстановления после
трех повторных одноминутных максимальных
нагрузок на велоэргометре: столбики со
штриховкой — работа, без штриховки —
отдых.
Существует четыре основных пути устранения молочной кислоты: 1) окисление до С02 и Н20 (так устраняется примерно 70% всей накопленной молочной кислоты); 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени)—около 20%; 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1—2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах).
Значительная часть медленной (лактатной) фракции O2-долга связана с устранением La. Эта фракция у нетренированных людей достигает максимально 5—10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, — 15—20 л. Длительность ее — около часа. Величина и продолжительность лактатной фракции О2-долга уменьшаются при активном восстановлении.
МУН
Важную, а для некоторых упражнений решающую роль в развитии утомления играет истощение углеводных ресурсов, в первую очередь гликогена в рабочих мышцах и печени. Мышечный гликоген служит основным субстратом (не считая фосфагенов) для энергетического обеспечения анаэробных и максимальных аэробных упражнений. При выполнении их он расщепляется почти исключительно анаэробным путем с образованием лактата, из-за тормозящего действия которого (снижения рН) высокая скорость расходования мышечного гликогена быстро уменьшается, что в конце концов предопределяет кратковременность таких упражнений. Поэтому расход мышечного гликогена при их выполнении невелик — до 30% от исходного содержания (рис. 20) — и не может рассматриваться как. важный фактор мышечного утомления. В околомаксимальных и в субмаксимальных аэробных упражнениях углеводы (мышечный гликоген и глюкоза крови) служат основными энергетическими субстратами рабочих мышц, используемыми в окислительных реакциях. В процессе выполнения субмаксимальных аэробных упражнений мышечный гликоген расходуется особенно значительно, так что момент отказа от продолжения их часто совпадает с почти полным или даже полным расходованием гликогена в основных рабочих мышцах.
Это дает основание считать, что истощение мышечного гликогена служит ведущим механизмом утомления при выполнении данных упражнений.
Значение углеводных ресурсов организма для субмаксимальной аэробной работоспособности доказано в специальных исследованиях. Испытуемые выполняли в них упражнение субмаксимальной аэробной мощности (на уровне около 75% от МПК) один раз до отказа при нормальном исходном содержании гликогена в мышцах и печени на фоне обычного, смешанного пищевого рациона, (контрольное упражнение). В среднем предельная продолжительность упражнения составляла около 90 мин. В конце работы содержание гликогена в мышцах падало почти до нуля—«истощающая» гликоген нагрузка (рис.).
Рис.3. Содержание мышечного гликогена после упражнений разной относительной мощности и, соответственно, разной предельной продолжительности. |
Это же упражнение испытуемые, выполняли повторно через 3 дня. В одних случаях На протяжении этих 3 дней пищевой рацион не содержал углеводов (белково-жировой рацион). За эти дни восстановления израсходованного гликогена в мышцах (и печени) почти не происходило (см. рис. 4, кривые 3 и 4). Поэтому упражнение повторно выполнялось при низком содержании гликогена. Предельная продолжительность его снизилась в среднем до 60 мин.
В других случаях на протяжении 3 дней после «истощающей» гликоген нагрузки пищевой рацион был с повышенным содержанием углеводов — 80—90% суточного калоража обеспечивалось углеводами (против 40% в смешанном рационе). В результате содержание гликогена в. мышцах (и печени) в 1,5—3 раза превышало обычное для данного человека (см. рис. 4, кривая 2). Такая комбинация предварительной «истощающей» гликоген, нагрузки и последующего трехдневного усиленного углеводного рациона, вызывающая значительное повышение содержания гликогена в рабочих мышцах и печени, получила название метода углеводного насыщения—МУН (Я. М. Коц). Интересно, что само по себе усиленное углеводное питание без предварительного истощения гликогена приводит лишь к. небольшому повышению его содержания в мышцах (см. рис. 4). Применение МУН дает значительное увеличение предельной продолжительности работы — в среднем до 120 мин (см. рис. 4, крестики). Таким образом, субмаксимальная аэробная работоспособность находится в прямой зависимости, от исходных запасов гликогена в мышцах и печени.
В энергообеспечении аэробных упражнений более низкой мощности (средней и ниже) значительную роль наряду с углеводами
Рис. 4. Содержание мышечного гликогена на протяжении трех дней углеводного рациона без нагрузки (/); после истощающей нагрузки с углеводным' рационом (2); с. безуглеводным рационом без тренировок (3) и с интенсивными тренировками (4) |
играют жиры (их относительная роль тем больше, чем ниже мощность упражнения). В конце выполнения таких упражнений содержание гликогена в рабочих мышцах снижено существенно, но не до такой степени, как при субмаксимальных аэробных упражнениях (см. рис. 3). Поэтому истощение его не может рассматриваться как ведущий фактор утомления. И все же это весьма важный фактор, так как по мере уменьшения содержания гликогена в рабочих мышцах они все в большей степени используют глюкозу крови, которая, как известно, служит единственным энергетическим источником для нервной системы. Из-за увеличения использования глюкозы работающими мышцами уменьшаются запасы гликогена в печени, расщепление которого обеспечивает поступление глюкозы в кровь. Поэтому по мере выполнения упражнений средней аэробной мощности снижается содержание глюкозы в крови (развивается гипогликемия), что может привести к нарушению деятельности ЦНС и утомлению. Чем выше исходное содержание гликогена в мышцах и печени, тем позднее развивается гипогликемия и наступает утомление при выполнении таких упражнений. Прием углеводов (глюкозы) на дистанции предотвращает или отдаляет эти явления. Вместе с тем если углеводы принимаются до старта, то повышается выброс инсулина в кровь и снижается концентрация глюкозы во время работы, т. е. более быстро развивается гипогликемия и наступает утомление.
Дата добавления: 2015-08-21; просмотров: 424 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Восстановление фосфагенов (АТФ и КрФ). | | | II. Цель и задачи портфолио |