Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

I. ВВЕДЕНИЕ

Читайте также:
  1. I. ВВЕДЕНИЕ
  2. I. Введение
  3. I. Введение
  4. I. Введение Вопрос об истине
  5. I. Введение.
  6. Nbsp;   Введение

II. Основная часть

2-1. Историческая справка – алгебра

2-2. Описание работы

2-3. Ход работы

2-4. Аппаратное обеспечение

2-5. Программное обеспечение

III. Охрана труда

IV. Заключение

4-1. Приложение

V. Список литературы



Задание выдал Преподаватель Лезин Юрий Леонидович


(подпись, Ф.И.О.) «     » 2011 г.


2.1 Историческая справка

 

Сведения из истории

 

История математических обозначений

Математические обозначения — это символы, используемые для компактной записи математических уравнений и формул. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского), математический язык использует множество специальных символов, изобретённых за последние несколько столетий.

Содержание
  • 1 Алгебра
    • 1.1 Объекты и операции
    • 1.2 Отношения
  • 2 Геометрия и тригонометрия
  • 3 Математический анализ
  • 4 Другие обозначения
  • 5 См. также
  • 6 Литература
  • 7 Ссылки
  • 8 Примечания

Алгебра

Объекты и операции

 

Уильям Отред

 

 

Франсуа Виет

 

 

3,62

Десятичная запятая, отделяющая дробную часть числа от целой, введена итальянским астрономом Маджини (1592) и Непером (1617). Ранее вместо запятой ставили иные символы: вертикальную черту: 3|62 или нуль в скобках: 3 (0) 62; некоторые авторы, следуя ал-Каши, употребляли чернила разного цвета. В Англии вместо запятой предпочли использовать точку, которую ставили посередине строки; эту традицию переняли в США, однако сдвинули точку вниз, чтобы не путать её со знаком умножения.

Привычная нам «двухэтажная» запись обыкновенной дроби использовалась ещё древнегреческими математиками, хотя знаменатель у них записывался над числителем, а черты дроби не было. Индийские математики переместили числитель наверх; через арабов этот формат переняли в Европе. Дробную черту впервые в Европе ввёл Леонардо Пизанский (1202), но в обиход она вошла только при поддержке Иоганна Видмана (1489).

+ —

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Иоганна Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (plus) или латинским словом et (союз «и»), а вычитание — буквой m (minus). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

× ∙

Знак умножения ввёл в 1631 году Уильям Отред (Англия) в виде косого крестика. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (Эригон, 1634), звёздочка (Иоганн Ран, 1659). Позднее Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560—1621).

/: ÷

Знаки деления. Отред предпочитал косую черту. Двоеточием деление стал обозначать Лейбниц. До них часто использовали также букву D. Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла, John Pell) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements) вывести обелюс из практики (1923) оказалась безрезультатной.

±

Знак плюс-минус появился у Жирара (1626) и Отреда. Правда, Жирар между плюсом и минусом писал ещё словами «или».

 

an

Возведение в степень. Современная запись показателя степени введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2. Позднее Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили Стевин, Валлис и Жирар.

 

Знак корня впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов, в 1525 году. Происходит этот символ от стилизованной первой буквы слова radix (корень). Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня.

 

Символ корня произвольной степени начал использовать Альбер Жирар (1629). Закрепился этот формат благодаря Ньютону и Лейбницу.

 

([{}])

Круглые скобки появились у Тартальи (1556) (для подкоренного выражения) и позднее у Жирара. Одновременно Бомбелли использовал в качестве начальной скобки уголок в виде буквы L, а в качестве конечной — его же в перевёрнутом виде (1550); такая запись стала прародителем квадратных скобок. Фигурные скобки предложил Виет (1593). Всё же большинство математиков тогда предпочитали вместо скобок надчёркивать выделяемое выражение. В общее употребление скобки ввели Лейбниц и Эйлер.

Σ

Знак суммы ввёл Эйлер в 1755 году.

 

П

Знак произведения ввёл Гаусс в 1812 году.

 

i

Букву i как код мнимой единицы: предложил Эйлер (1777), взявший для этого первую букву слова imaginarius (мнимый).

 

|x|

Обозначение абсолютной величины и модуля комплексного числа появились у Вейерштрасса в 1841 году. В 1903 году Лоренц использовал эту же символику для длины вектора.

 

[x]

Символ функции «целая часть» ввёл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.

 


Дата добавления: 2015-08-21; просмотров: 291 | Нарушение авторских прав


Читайте в этой же книге: Математический анализ | Другие обозначения | Из истории интегрального исчисления |
<== предыдущая страница | следующая страница ==>
Структура письменной экзаменационной работы| Отношения

mybiblioteka.su - 2015-2024 год. (0.01 сек.)