Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Концепция эффективности портфеля

Читайте также:
  1. I. Основная концепция проекта
  2. VII. РЕЗУЛЬТАТЫ РЕАЛИЗАЦИИ ОСНОВ И ОЦЕНКА ЭФФЕКТИВНОСТИ
  3. VII. Результаты реализации Стратегии и оценка ее эффективности
  4. Анализ и оценка показателей эффективности использования основных средств
  5. Анализ портфеля продукции
  6. Анализ состояния и эффективности использования основных средств
  7. Анализ эффективности мероприятий финансового оздоровления

Эффективным портфелем (efficient portfolio) мы называем такой портфель, который предлагает инвестору максимально возможный ожидаемый уровень доходности при заданном уровне риска.

Чтобы объяснить значение концепции эффективности портфеля и показать, как получить действительно эффективный портфель, давайте рассмотрим предыдущий пример, дополнительно включив в него еще один рискованный актив. Рискованный актив 2 имеет ожидаемую ставку доходности 0,08 в год и стандартное отклонение 0.15. Он представлен точкой R на рис. 12.2.

Инвестор, который хоче1 получить ожидаемую ставку доходности в 0.08 годовых, может добиться своей цели, вложив всю сумму в рискованный актив 2. Тогда он окажется в ситуации, описываемой точкой R. Но при этом портфель инвестора неэффективен, потому что в точке G инвестор может получить такую же ожидаемую ставку доходности (0,08 в год) при меньшем значении стандартного отклонения.

Из табл. 12.1 видно, что в точке G стандартное отклонение составляет только 0,05. Это объясняется тем, ч-ю 25% инвестиций данного портфеля вложены в рискованный актив 1, а 75% — в безрисковый актив. Действительно, не желающий рисковать инвестор выберет на прямой риск/доходность, соединяющей точки G и S, любую точку — только не точку R. Любая из этих точек соответствует вполне приемлемой ситуации, когда некоторое количество рискованного актива 1 уравновешивается безрисковым активом. Например, портфель в точке J имеет стандартное отклонение, равное стандартному отклонению рискованного актива 2 (о = 0,15), но его ожидаемая ставка доходности составляет 0,12 годовых, а не 0,08. Из табл. 12.1 нам известно, что такое соотношение соответствует портфелю, который на 75% состоит из рискованного актива 1 и на 25% из безрискового актива.

С помощью уравнений 12.1 и 12.2 можно определить состав других эффективных портфелей, которые описываются точками между G и J и имеют, следовательно, более высокую ожидаемую ставку доходности и меньшее значение стандартного oтклонения в сравнении с рискованным активом 2. Рассмотрим, например, портфель, который на 62,5% состоит из рискованного актива 1 и на 37,5 % — безрискового актива. Его ожидаемая ставка доходности равна 0,11 в год, а стандартное отклонение составляет 0,125.

Контрольный вопрос 12.7
Как инвестор может получить ожидаемую ставку доходности в 0,105 годовых, вложив средства в рискованный актив 1 и безрисковый актив? Каким будет стандартное отклонение такого портфеля? Сравните это значение со стандартным отклонением рискованного актива 2.

 

Рис. 12.2. Эффективность портфеля

Примечание. В точке R портфель на 100% состоит из инвестиций, вложенных в рискованный актив 2 с ожидаемой ставкой доходности 0,08 и s = 0,15. Инвестор может получить более высокую ожидаемую доходность и меньшее стандартное отклонение в любой точке прямой, проходящей через точки G и J.


Дата добавления: 2015-09-03; просмотров: 71 | Нарушение авторских прав


Читайте в этой же книге: ХЕДЖИРОВАНИЕ ВАЛЮТНОГО РИСКА С ПОМОЩЬЮ СВОПА | МИНИМИЗАЦИЯ РАСХОДОВ НА ХЕДЖИРОВАНИЕ | СТРАХОВАНИЕ ИЛИ ХЕДЖИРОВАНИЕ | ОПЦИОНЫ КАК ИНСТРУМЕНТ СТРАХОВАНИЯ | ПРИНЦИП ДИВЕРСИФИКАЦИИ | Недиверсифицируемый риск | ДИВЕРСИФИКАЦИЯ И СТОИМОСТЬ СТРАХОВАНИЯ | Жизненный цикл семьи | Горизонты прогнозирования | О роли профессионального управляющего активами |
<== предыдущая страница | следующая страница ==>
Объединение безрискового актива с единственным рискованным активом| Портфели из двух рискованных активов

mybiblioteka.su - 2015-2024 год. (0.005 сек.)