Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Датчики знімання ЕКС.

Читайте также:
  1. Автоматические датчики (извещатели).
  2. Воздействие влияющих факторов на датчики давления
  3. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
  4. Волоконно-оптические датчики поляризационного типа
  5. Гидродинамические датчики
  6. Гидростатические датчики уровня
  7. ДАТЧИКИ



Всі пристрої знімання медичної інформації поділяють на 2 групи: електроди і датчики (перетворювачі). Електроди використовуються для знімання електричного сигналу, реально існуючого в організмі, а датчик - пристрій знімання, що реагує своїм чутливим елементом на вплив вимірюваної величини, а також здійснює перетворення цього впливу у форму, зручну для подальшої обробки. Електроди для знімання біопотенціалів серця прийнято називати електрокардіографічними (електроди ЕКГ). Вони виконують роль контакту з поверхнею тіла і таким чином замикають електричний ланцюг між генератором біопотенціалів і пристроєм вимірювання.

Автоматичний аналіз електрокардіосигналів в кардіомоніторах пред'являє жорсткі вимоги до пристроїв знімання - електродів ЕКГ. Від якості електродів залежить достовірність результатів аналізу, і отже, ступінь складності засобів, що застосовуються для виявлення сигналу на тлі завад. Низька якість знімання ЕКС практично не може бути скомпенсировано ніякими технічними рішеннями.

Вимоги, що застосовуються до електродів ЕКГ, відповідають основним вимогам до будь-яких перетворювачів біоелектричних сигналів:

Як показало застосування перших кардіомоніторів, звичайні пластинчасті електроди ЕКГ, широко використовувані в ЕКГ, не задовольняють вимогам тривалого безперервного контролю ЕКС через великого рівня перешкод при зніманні.

Ехокардіографія називається метод вивчення будови і руху структур серця за допомогою відбитого ультразвуку. Одержуване при реєстрації зображення серця називається ехокардіограму (ЕхоКГ). Вперше ЕхоКГ була зареєстрована в 1954 р. шведськими вченими Едлер і Херц; свою сучасну назву метод отримав в 1965 р. за пропозицією Американського інституту ультразвуку в медицині.

Фізичні принципи методу засновані на тому, що ультразвукові хвилі проникають у тканину і частково у вигляді ехосигналу відбиваються від кордонів різної щільності. Хвилі ультразвукової частоти генеруються датчиком, які мають п'єзоелектричним ефектом і встановлюваним над областю серця, відбиті від структур серця ехосигнали знову перетворюються датчиком в електричний імпульс, який посилюється, реєструється та аналізується на екрані відеомонітора. Одночасно отримані результати можуть фіксуватися на фотоплівці, спеціально хімічно обробленої папері або за допомогою поляроїдних камери у вигляді фотографій. Частота ультразвукових хвиль, використовуваних в ехокардіографії, коливається від 2 до 5 МГц, довжина - 0,7-1,4 мм; вони проникають у тіло на глибину 20-25 см. Датчик працює в імпульсному режимі: 0,1% часу - як випромінювач, 99,9% - як приймач імпульсів. Таке співвідношення часу передачі і прийому імпульсів дозволяє вести безперервне спостереження на екрані відеомонітора. Для виділення окремих фаз серцевого циклу синхронно з ЕхоКГ реєструються ЕКГ, ФКГ або сфігмограмма.

В даний час крім одномірної ехокардіографії, що дає змогу аналізувати будову і рух структур серця - М-режим (від лат. Motio - рух), використовується двовимірна в реальному масштабі часу і починається застосування тривимірної, об'ємною, ехокардіографії.

Фонокардіографія представляє собою метод графічної реєстрації звукових процесів, що виникають при діяльності серця.

Фонокардіографія є апаратом, реєструючим звукові процеси серця. Звичайно одночасно з фонокардіограм (ФКГ) реєструється ЕКГ, що дозволяє чітко визначити систолічний і діастолічний інтервали.

Фонокардіографія будь-якого типу складається з мікрофона, електронного підсилювача, фільтрів частот і реєструючого пристрою. Мікрофон перетворює звукову енергію в електричні сигнали. Він повинен мати максимальної чутливістю, не вносити спотворень в передані сигнали і бути маловоспріімчівим до зовнішніх шумів. За способом перетворення звукової енергії в електричні сигнали мікрофони фонокардіографія поділяються на п'єзоелектричні і динамічні.

Принцип дії п'єзоелектричного мікрофона заснований на п'єзоелектричному ефекті - виникненні різниці при механічній деформації деякихкристалів (кварцу, сегнетової солі та ін.) Кристал встановлюється і закріплюється в корпусі мікрофона, щоб під дією звукових коливань він піддавався деформації.

В даний час найчастіше використовуються динамічні мікрофони. Принцип їх дії заснований на явищі електромагнітної індукції: при русі провідника в полі постійного магніту в ньому виникає е.. д. с., пропорційна швидкості руху. На кришці мікрофона наклеєно кільце з еластичної гуми, завдяки чому мікрофон щільно накладається на поверхню грудної клітки. Через отвори в кришці динамічного мікрофона звук впливає на мембрану, зроблену з найтоншої міцної плівки. Поєднана з мембраною котушка переміщається в кільцевому зазорі магнітної системи мікрофона, внаслідок чого з'являється е.. д. с.

Електричний сигнал подається на підсилювач у завдання якого входить не просто посилити всі звуки в рівній мірі, а більшою мірою посилити слабкі високочастотні коливання, відповідні серцевим шумів, і в меншій мірі низькочастотні, відповідні серцевим тонам. Тому весь спектр розбивається на діапазони низьких, середніх і високих частот. У кожному такому діапазоні забезпечується необхідне підсилення. Повну картину звуком серця отримують при аналізі ФКГ, отриманих в кожному діапазоні частот.

У вітчизняних приладах використовуються наступні частотні характеристики при записі ФКГ: А - аускультативна (номінальна частота 140 ± 25 Гц), Н - низькочастотна (35 ± 10 Гц), З 1 - середньочастотна-1 (70 ± 15 Гц), С 2 - середньочастотна -2 (140 ± 25 Гц), В - високочастотна (250 ± 50 Гц).

Для реєстрації отриманих сигналів використовують реєструючі системи, що мають малу інерцію (оптичну або струминний).



7. Висновок.



У даній роботі була зроблена спроба розглянути окремі типи медичних датчиків, вивчити фізичні принципи їх роботи, познайомитися з конкретними марками та підприємствами-виробниками. Про труднощі, зустрінутих при написанні цієї роботи було вже зазначено вище (введення). У процесі виконання були отримані навички роботи з довідковою літературою, періодичними виданнями, використовувалися й електронні види інформації (internet).




Дата добавления: 2015-08-13; просмотров: 55 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Температурні датчики. Термістори.| Как работаем?

mybiblioteka.su - 2015-2024 год. (0.007 сек.)