Читайте также:
|
|
Иногда связи кодера описываются с помощью полиномиального генератора для описания реализации обратной связи регистра сдвига циклических кодов. Сверточный кодер можно представить в виде набора из n полиномиальных генераторов, по одному для каждого из n сумматоров по модулю 2. Каждый полином имеет порядок K - 1 или меньше и описывает связь кодирующего регистра сдвига с соответствующим сумматором по модулю 2, почти так же как и вектор связи. Коэффициенты возле каждого слагаемого поли нома порядка (К - 1) равны либо 1, либо 0, в зависимости от того, имеется ли связь между регистром сдвига и сумматором по модулю 2. Для кодера на рис 2.6 можно записать полиномиальный генератор для верхних связей и - для нижних.
Здесь слагаемое самого нижнего порядка в полиноме соответствует входному разряду регистра. Выходная последовательность находится следующим образом:
чередуется с
Прежде всего, выразим вектор сообщения m = 1 0 1 в виде полинома, т.е. . Для очистки регистра мы снова будем предполагать использование нулей, следующих за битами сообщения. Тогда выходящий полином U(X), или выходящая последовательность U кодера (рис. 2.6) для входного сообщения m может быть найдена следующим образом:
Рис.
В этом примере мы начали обсуждение с того, что сверточный кодер можно трактовать как набор регистров сдвига циклического кода. Мы представили кодер в виде полиномиальных генераторов, с помощью которых описываются циклические коды. Однако мы пришли к той же последовательности на выходе, что и на рис. 2.7, и к той же, что и в предыдущем разделе, полученной при описании реакции на импульсное возмущение.
Дата добавления: 2015-08-09; просмотров: 136 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Реакция кодера на импульсное возмущение | | | Представление состояния и диаграмма состояний |