Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Методы и принципы измерений

Читайте также:
  1. I. Методы перехвата.
  2. II. Методы несанкционированного доступа.
  3. II. Методы социально-педагогической деятельности руководителя временной лидерской команды (вожатого).
  4. II. Понятие и принципы построения управленческих структур.
  5. II. Принципы российского гражданства.
  6. III. Методы манипуляции.
  7. III. Методы социально-педагогического взаимодействия.

Основные определения. Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.

Под понятием метод измерения подразумевается совокупность процессов использования принципов и средств измерений.

Принцип измерений — это совокупность физических явлений, на которых основаны измерения. Например, измерение температуры с использованием термоэлектрического эффекта; измерение расхода газа по перепаду давления в сужающем устройстве.

Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения, и по мере развития науки и техники, число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков помогает не только правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.

 

 

 

Рис. 2.4

 

Методы измерений. Можно выделить следующие виды методов измерений.

1. По характеру зависимости измеряемой величины от времени измерения методы измерений подразделяются на:

статические, при которых измеряемая величина остается постоянной во времени;

динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления; динамическими — измерения пульсирующих давлений, вибраций.

2. По способу получения результатов измерений (виду уравнения измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непосредственно из опытных данных, например, измерение угла угломером или измерение диаметра штангенциркулем.

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, например определение среднего диаметра резьбы с помощью трех проволочек или угла с помощью синусной линейки.

Совместными называют измерения, производимые одновременно (прямые или косвенные) двух или нескольких неодноименных величин. Целью совместных измерений является нахождение функциональной зависимости между величинами, например зависимости длины тела от температуры, зависимости электрического сопротивления проводника от давления и т. п.

Совокупные — это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Результаты совокупных измерений находят путем решения системы уравнений, составляемых по результатам нескольких прямых измерений. Например, совокупными являются измерения, при которых массы отдельных гирь набора находят по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь.

3. По условиям, определяющим точность результата измерения, методы делятся на три класса.

Измерения максимально возможной точности, достижимой при существую­щем уровне техники. К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения и др.). К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями с погрешностью заранее заданного значения.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

4. По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использовании значений физических констант, например, измерение размеров деталей штангенциркулем или микрометром.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную, например измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика.

5. В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

6. По способу получения значений измеряемых величин различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки — метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия (например, измерение длины с помощью линейки или размеров деталей микрометром, угломером и т. д.).

Метод сравнения с мерой — метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра микрокатор устанавливают на нуль по блоку концевых мер длины, а результаты измерения получают по отклонению стрелки микрокатора от нуля, то есть сравнивается измеряемая величина с размером блока концевых мер. О точности размера судят по отклонению стрелки микрокатора относительно нулевого положения.

Существуют несколько разновидностей метода сравнения:

метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения;

дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;

нулевой метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;

метод совпадений, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал).

7. При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.

8. В зависимости от измерительных средств, используемых в процессе измерения, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод оценки основан на использовании данных нескольких специалистов. Широко применяется в квалиметрии, спорте, искусстве, медицине.

Эвристические методы оценки основаны на интуиции. Широко используется способ попарного сопоставления, когда измеряемые величины сначала сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения.

Органолептические методы оценки основаны на использовании органов чувств человека (осязания, обоняния, зрения, слуха и вкуса). Часто используются измерения на основе впечатлений (конкурсы мастеров искусств, соревнования спортсменов).

Преобразование измеряемой величины в процессе измерений. Осуществляется техническими средствами (преоразователями) на основе принципов измерения. Преобразователь — это прибор, который преобразует одну форму энергии в другую. Имеются два основных типа преобразователей: активный и пассивный. Активный, или автогенерирующий, преобразователь непосредственно преобразует одну форму энергии в другую, не нуждаясь во внешнем источнике энергии или в возбуждении. Пример такого преобразователя — термопара, которая выдает на выходе электрический сигнал, когда один из ее концов нагревается. Пассивный преобразователь не может непосредственно преобразовывать энергию, но он управляет энергией или возбуждением, которые поступают от другого источника. На рис. 2.5 показан простой потенциометрический преобразователь, в котором механические изменения на входе вызывают на выходе сигнал, пропорциональный входному сигналу.

 

 

Рис. 2.5. Схема пассивного преобразователя.

 

Исходя из классификации энергии на шесть различных форм, на рис. 2.6 представлены возможные комбинации входного или измеряемого сигнала, выходного сигнала и возбуждения для любых преобразователей. Они определяют очень большое число различных типов преобразователей.

Преобразователь — это обычно первое звено в измерительной системе, как показано на рис. 2.7. Он может располагаться в корпусе прибора или может быть отнесен от прибора, например расположен во вредной среде. Согласующее устройство изменяет сигнал преобразователя, например усиливает или фор­мирует его, чтобы он соответствовал требованиям выходного устройства. Это устройство может быть индикатором или системой памяти.

 

Рис. 2.6. Варианты использования преобразователей.

 

Рис 2.7. Упрошенная схема измерительной системы с использованием преоб­разователя.

Принципы измерений. Рассмотрим некоторые типичные принципы и отдельные физические явления или свойства веществ, позволяющие преобразовывать измеряемые величины в электрические.

1. Нагревание места спая двух электродов из разнородных материалов (спая термопары) вызывает появление э. д. с., что позволяет измерять температуру. При этом может быть достигнута весьма высокая точность.

2. Нагревание электрических проводников и полупроводников вызывает изменение их сопротивления (термометры сопротивления, термисторы). Одни материалы (например, платина) позволяют получить высокую точность измерения температуры, другие материалы (особенно полупроводники) дают возможность измерять очень малые интервалы температур и температуру тел очень малого объема, например насекомых, листьев, растений и т. п.

3. Растяжение или сжатие некоторых металлов в пределах их упругости вызывает изменение их электрического сопротивления. Это явление дает возможность изготовлять электротензометры и измерять малые деформации тел и усилия в условиях, при которых измерение другими методами невозможно, например, деформации различных частей машин во время их работы. Это явление позволяет также измерять высокие и сверхвысокие давления (манганиновый манометр).

4. В граничном слое между некоторыми полупроводниками и металлами при его освещении возникает э.д.с. Это явление называют фотоэлектрическим эффектом. На использовании его основаны фотоэлементы, дающие возможность измерять световые величины методом непосредственной оценки, а также в ряде случаев исключать необходимость визуального наблюдения.

5. Электрическое сопротивление некоторых полупроводников под действием света весьма заметно изменяется. Это явление используется для изготовления фотосопротивлений. Применение фотосопротивлений требует постороннего источника тока, однако фотосопротивления обладают значительно более высокой чувствительностью, чем фотоэлементы.

6. Зависимость яркости свечения тела от температуры, которая в свою очередь зависит от силы тока, накаливающего нити, позволяет измерять температуру бесконтактным методом, например при помощи оптического пирометра.

7. На гранях некоторых кристаллов, когда к двум граням приложена сила, сдавливающая или растягивающая их, возникает э.д.с. Это явление, называемое пьезоэлектрическим эффектом, обратимо, т. е., когда к двум граням приложено напряжение, кристалл деформируется. Пьезоэлектрический эффект, практически безынерционный, получил широкое и разнообразное применение. Он используется для измерения давления, вибрации, частоты электрических колебаний и т. п. Особое значение этот эффект имеет для стабилизации частоты высокочастотных генераторов. Для этой цели применяются, как правило, кристаллы кварца. Так, кварцевые часы, основанные на использовании пьезоэлектрического эффекта в кварце, были до недавнего времени наиболее точными приборами для измерения интервалов времени.

8. Магнитная проницаемость тел из ферромагнитных материалов изменяется в зависимости от приложенных к ним механических сил (растягивающих, сжимающих, изгибающих, скручивающих). Наблюдается и обратное явление: в ферромагнитном теле при внесении его в магнитное поле возникают механические деформации. Эти явления получили название магнитострикции. Магнитное поле, изменяющееся при механическом воздействии, измеряется при помощи катушки, обмотка которой помещается на ферромагнитном сердечнике. Магнитострикционные преобразователи применяются главным образом в технике измерения звуковых и ультразвуковых колебаний.

9. Как известно, электрическая емкость плоского конденсатора выражается формулой C = εS/d, где С —емкость конденсатора; ε —диэлектрическая проницаемость диэлектрика, находящегося между обкладками; S — площадь его обкладок; d — расстояние между обкладками.

Изменение электрической емкости используют для измерения малых размеров и малых перемещений.

10. Перемещение измеряют также по изменению индуктивности катушки с сердечником из магнитомягкого материала. Изменение воздушного зазора в сердечнике вызывает изменение индуктивного сопротивления катушки, которое определяют тем или иным электрическим методом.

11. Существует еще ряд способов преобразования показаний того или иного измерительного прибора в электрическую величину, удобную для передачи на расстояние, т. е. телеизмерений. Телеизмерения в настоящее время осуществляются самыми разнообразными способами. Каналами передачи преобразованных показаний приборов являются электрические провода и каналы радиосвязи. В качестве примера можно привести гидроэлектростанции, насосные станции и другие устройства нефте- и газопроводов, управление и наблюдения за режимом работы которых производятся иногда на очень больших расстояниях. Телеизмерения в этом случае осуществляются по проводам.


Дата добавления: 2015-08-10; просмотров: 166 | Нарушение авторских прав


Читайте в этой же книге: Понятие о физической величине (ФВ) и единице ФВ. Виды физических величин. | Системы единиц ФВ, принципы их образования. | Международная система единиц SI |
<== предыдущая страница | следующая страница ==>
Передача размера единиц от эталонов рабочим средствам измерений. Поверочные схемы для средств измерений.| Виды аргументов

mybiblioteka.su - 2015-2025 год. (0.012 сек.)