Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

ТЕРМИНОЛОГИЯ. Математика – изучение абсолютно необходимых истин.

Читайте также:
  1. В.О. Ключевский. Терминология русской истории 1 страница
  2. В.О. Ключевский. Терминология русской истории 10 страница
  3. В.О. Ключевский. Терминология русской истории 2 страница
  4. В.О. Ключевский. Терминология русской истории 3 страница
  5. В.О. Ключевский. Терминология русской истории 4 страница
  6. В.О. Ключевский. Терминология русской истории 5 страница
  7. В.О. Ключевский. Терминология русской истории 6 страница

 

Математика – изучение абсолютно необходимых истин.

Доказательство – способ установления истинности математических высказываний.

(Традиционное определение): последовательность утверждений, которая начинается с некоторых посылок, заканчивается желаемым выводом и удовлетворяет определенным «правилам вывода».

(Лучшее определение): вычисление, моделирующее свойства какой-то абстрактной категории, результат которого устанавливает, что абстрактная категория обладает данным свойством.

Математическая интуиция (традиционное) – высший самоочевидный источник доказательства в математическом рассуждении.

(Действительное): Множество теорий (осознанных и неосознанных) о поведении определенных физических объектов, поведение которых моделирует поведение интересных абстрактных категорий.

Интуиционизм – доктрина, связанная с тем, что все рассуждение об абстрактных категориях ненадежно, кроме того случая, когда оно основано на прямой самоочевидной интуиции. Это математическая версия солипсизма.

Десятая задача Гильберта – «раз и навсегда установить определенность математических методов», найдя набор правил вывода, достаточный для всех обоснованных доказательств, и затем доказать состоятельность этих правил в соответствии с их собственными нормами.

Теорема Геделя о неполноте – доказательство того, что десятая задача Гильберта не имеет решения. Для любого набора правил вывода существуют обоснованные доказательства, которые эти правила не определяют как таковые.

 

РЕЗЮМЕ

 

Сложные и автономные абстрактные категории объективно существуют и являются частью структуры реальности. Существуют логически необходимые истины об этих категориях, которые и составляют предмет математики. Однако, эти истины невозможно знать определенно. Доказательства не дают их выводам определенность. Обоснованность конкретной формы доказательства зависит от истинности наших теорий о поведении объектов, с помощью которых мы осуществляем доказательство. Следовательно, математическое знание наследственно производно и полностью зависит от нашего знания физики. Постижимые математические истины – это в точности то бесконечно малое меньшинство, которое можно передать в виртуальной реальности. Однако непостижимые математические категории (например, среды Кантгоуту) тоже существуют, т. к. они сложным образом появляются в наших объяснениях постижимых категорий.

Я сказал, что вычисление всегда было квантовой концепцией, потому что классическая физика несовместима с интуицией, создавшей основу классической теории вычисления. То же самое относится ко времени. За тысячу лет до квантовой теории время было первой квантовой концепцией.

 


Дата добавления: 2015-08-18; просмотров: 57 | Нарушение авторских прав


Читайте в этой же книге: Решение задач | ТЕРМИНОЛОГИЯ | Критерии реальности | ТЕРМИНОЛОГИЯ | Виртуальная реальность | Универсальность и пределы вычислений | Глава 7 | Важность жизни | Квантовые компьютеры | ТЕРМИНОЛОГИЯ |
<== предыдущая страница | следующая страница ==>
Природа математики| Время: первая квантовая концепция

mybiblioteka.su - 2015-2025 год. (0.006 сек.)