Читайте также:
|
|
Начало работ по монтажу силового трансформатора начинается с подготовки подъездных путей к месту его установки, а также самого места и маслоприемника (для масляного типа). Фундаменты под трансформаторы должны иметь правильно установленные анкеры для тяговых устройств, кроме того, должны быть в наличии фундаменты под домкраты для разворота катков.
Полностью собранными и залитыми поставляются трансформаторы мощностью не более 1600 кВА, в остальных случаях, как правило, они поставляются в разобранном состоянии. Транспортировка силового трансформатора, большую ось которого располагают по ходу движения, на место монтажа осуществляется с помощью автомобиля необходимой грузоподъемности. При этом установка и крепеж его осуществляется в полном соответствии со схемой, указанной заводом. Разгрузка осуществляется краном или гидравлическими домкратами.
После того, как силовой трансформатор масляного типа доставлен на объект, организуются все необходимые условия по его хранению до начала монтажа. Доставка, разгрузка, хранение и другие операции, проводимые до установки, должны фиксироваться специальными актами. По ГОСТу, СНиПу и другим нормативным документам монтаж силового трансформатора возможен без ревизии его активной части.
Последняя, как правило, допускается в случаях возможных повреждений, о чем могут указывать измерения или внешние признаки. Если ревизии активной части не избежать, принимаются меры по защите изоляционных обмоток от проникновения атмосферной влаги. Помимо того, что вскрытие активной части трансформатора проводят в ясную сухую погоду, обычно ее прогревают до температуры, превышающей температуру воздуха, во избежание образования конденсата. Время пребывания активной части трансформатора напрямую зависит от его напряжения и влажности воздуха.
Ревизия активной части включает:
· проверку болтовых креплений;
· проверку и осмотр изоляционных элементов;
· подпрессовку обмоток;
· проверку заземления;
· проверку изоляции магнитопровода и его частей на сопротивление.
По завершении всех работ активную часть промывают трансформаторным маслом и выполняют ее установку, после чего герметизируют корпус трансформатора. Перед включением и монтажом силового трансформатора проводятся его испытания в соответствии с нормативной документацией:
· измерение сопротивления изоляции и тангенса угла диэлектрических потерь;
· испытание изоляции повышенным напряжением;
· измерение сопротивления изоляции постоянным током;
· определение потерь на холостом ходу;
· проверка коэффициента трансформации;
· испытания масла;
· испытание герметичности бака;
· проверка устройств охлаждения, защиты масла и переключателей.
Монтаж силового трансформатора недопустим без первого пробного запуска, который осуществляется спустя 12 часов после крайней доливки масла. Пробное включение осуществляется с установкой максимальной защиты с нулевой выдержкой времени и пересоединением сигнальных контактов газовой защиты на отключение.
Таким образом, монтаж силового трансформатора всегда должен сопровождается пробным пуском, проводимым при номинальном напряжении в течение получаса с целью прослушивания, и наблюдением за его работой.
4.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
БИЛЕТ 6
1. Вопрос 1. Цепь переменного тока с активным сопротивлением.
Даю определение активного сопротивления, демонстрируя учащимся образцы: электрические лампочки различных типов и напряжений, электронагревательные элементы бытовых приборов, школьные реостаты.
Предлагает рассмотреть цепь переменного тока, в которую включено одно активное сопротивление, и нарисовать ее в тетрадях. После проверки рисунка рассказываю, что в электрической цепи (рис. 1, а) под действием переменного напряжения протекает переменный ток, изменение которого зависит от изменения напряжения. Если напряжение увеличивается, ток в цепи возрастает, а при напряжении, равном нулю, ток в цепи отсутствует. Изменение направления его также будет совпадать с изменением направления напряжения
(рис. 1, в).
Рис 1. Цепь переменного тока с активным сопротивлением: а – схема; б – векторная диаграмма; в – волновая диаграмма
Графически изображаю на доске синусоиды тока и напряжения, которые совпадают по фазе, объясняя, что хотя по синусоиде можно определить период и частоту колебаний, а также максимальное и действующее значения, тем не менее построить синусоиду довольно сложно. Более простым способом изображения величин тока и напряжения является векторный.
Для этого вектора напряжения (в масштабе) следует отложить вправо из произвольно выбранной точки. Вектор тока преподаватель предлагает учащимся отложить самостоятельно, напомнив, что напряжение и ток совпадают по фазе. После построения векторной диаграммы (рис. 1, б) следует показать, что угол между векторами напряжения и тока равен нулю, т. е.? = 0. Сила тока в такой цепи будет определяться по закону Ома:
Для закрепления данного вопроса задаю учащимся следующие вопросы:
1. Какое сопротивление называется активным?
2. Как будет изменяться ток по величине, если напряжение увеличивается?
3. Учащиеся решают разноуровневые задачи по определению активного сопротивления.
4. Почему на векторной диаграмме ток и напряжение отложены в одном и том же направлении?
Убедившись, что учащиеся усвоили эту часть материала, приступаю к объяснению следующего вопроса.
Вопрос 2. Цепь переменного тока с индуктивным сопротивлением
Рассмотрим электрическую цепь переменного тока (рис. 2, а), в которую включено индуктивное сопротивление. Таким сопротивлением является катушка с небольшим количеством витков провода большого сечения, в которой активное сопротивление принято считать равным 0.
Рис. 2. Цепь переменного тока с индуктивным сопротивлением
Вокруг витков катушки при прохождении тока и будет создаваться переменное магнитное поле, индуктирующее в витках эде самоиндукции.
Согласно правилу Ленца, эде индукции всегда противодействует причине, вызывающей ее. А так как эде самоиндукции вызвана изменениями переменного тока, то она и препятствует его прохождению.
Сопротивление, вызываемое эде самоиндукции, называется индуктивным и обозначается буквой xL. Индуктивное сопротивление катушки зависит от скорости изменения тока в катушке и ее индуктивности L:
где ХL– индуктивное сопротивление, Ом; – угловая частота переменного тока, рад/с; L–индуктивность катушки, Г.
Угловая частота ==
, следовательно,
.
Для закрепления понятия об индуктивности преподаватель может вызвать одного-двух учащихся к доске для решения примеров. Примеры соответствуют уровню В.
Пример. В цепь переменного тока включена катушка с индуктивностью L = 0,4T. Определить индуктивное сопротивление катушки, если частота = 50 Гц.
Решение. 2-3,14.50.0,4= 125,6 Ом. Для сравнения можно определить
при
= 200 Гц:
= 2-3,14.200-0,4 = 502,4 Ом.
Сравнивая эти результаты, показываю, что с увеличением частоты переменного тока индуктивное сопротивление катушки повышается, а при уменьшении убывает; / = 0, т. е. при постоянном токе индуктивное сопротивление отсутствует.
Здесь уместно задать учащимся вопросы:
1. Какое сопротивление называется индуктивным?
2. В каких случаях сопротивление бывает большим или меньшим?
3. Учащиеся решают задачи на определение индуктивного сопротивления, уровней А,В.
Следующий этап урока – построение диаграмм. Для этого рисую на доске синусоиду переменного тока в осях координат х и у (рис. 5,6), напоминая учащимся, что эдс самоиндукции направлена навстречу току, и, следовательно, если ток уменьшается (точки 2 и <3), то электродвижущая сила самоиндукции будет возрастать. В тот момент, когда ток равен нулю, эдс будет иметь максимальное значение (точка 7). Такая же зависимость и в других точках синусоиды. Ток опережает эдс самоиндукции на угол = 90°. Чтобы установить зависимость тока от напряжения, преподаватель напоминает учащимся о том, что если в цепи переменного тока только одна индуктивность, то эдс самоиндукции будет направлена навстречу напряжению генератора U. Следовательно, напряжение и эдс самоиндукции также сдвинуты по фазе на угол <р= 180°. В связи с этим синусоида напряжения противоположна синусоиде эдс самоиндукции. Изображаю на графике синусоиду напряжения U. Из графика видно, что в цепи, имеющей только индуктивность, напряжение опережает ток на 90°.
Большим индуктивным сопротивлением обладают реакторы, применяемые для ограничения тока электрических цепях, обмотки трансформаторов, обмотки электрических двигателей переменного тока. Ток в таких цепях определяется по закону Ома.
Учащиеся дают определения всем величинам, входящим в данную формулу.
Вопрос 3. Емкостное сопротивление в цепи переменного тока.
Перед началом объяснения следует напомнить, что имеется ряд случаев, когда в электрических цепях, кроме активного и индуктивного сопротивлений, имеется и емкостное сопротивление. Прибор, предназначенный для накопления электрических зарядов, называется конденсатором. Простейший конденсатор – это два проводка, разделенных слоем изоляции. Поэтому многожильные провода, кабели, обмотки электродвигателей и т. д. имеют емкостное сопротивление.
Объяснение сопровождается показом конденсатора различных типов и емкостных сопротивлений с подключением их в электрическую цепь.
Предлагаю рассмотреть случай, когда в электрической цепи преобладает одно емкостное сопротивление, а активным и индуктивным можно пренебречь из-за их малых значений (рис. 6, а). Если конденсатор включить в цепь постоянного тока, то ток по цепи проходить не будет, так как между пластинами конденсатора находится диэлектрик. Если же емкостное сопротивление подключить к цепи переменного тока, то по цепи будет проходить ток /, вызванный перезарядкой конденсатора. Перезарядка происходит потому, что переменное напряжение меняет свое направление, и, следовательно, если мы подключим амперметр в эту цепь, то он будет показывать ток зарядки и разрядки конденсатора. Через конденсатор ток и в этом случае не проходит.
Сила тока, проходящего в цепи с емкостным сопротивлением, зависит от емкостного сопротивления конденсатора Хс и определяется по закону Ома
где U – напряжение источника эдс, В; Хс – емкостное сопротивление, Ом; / – сила тока, А.
Рис. 3. Цепь переменного тока с емкостным сопротивлением
Емкостное сопротивление в свою очередь определяется по формуле
где С – емкостное сопротивление конденсатора, Ф.
Предлагаю учащимся построить векторную диаграмму тока и напряжения в цепи с емкостным сопротивлением. Напоминаю, что при изучении процессов в электрической цепи с емкостным сопротивлением было установлено, что ток опережает напряжение на угол ф = 90°. Этот сдвиг фаз тока и напряжения следует показать на волновой диаграмме. Графически изображаю на доске синусоиду напряжения (рис. 3, б) и дает задание учащимся самостоятельно нанести на чертеж синусоиду тока, опережающую напряжение на угол 90°. Убедившись, что все учащиеся выполнили задание правильно, задаю ряд вопросов:
1. Почему амперметр не покажет тока, если включить конденсатор в цепь постоянного тока?
2. Какой ток показывает амперметр при включении конденсатора в цепь переменного тока?
3. В каких единицах измеряется емкость? Учащиеся на доске вычерчивают диаграмму.
Закрепление материала можно начать с практического примера:
Рис, 4. Цепь переменного тока с активным и индуктивным сопротивлениями
Пример: По обмоткам проходит ток и они нагреваются; следовательно, обмотки имеют активное сопротивление и создают магнитное поле. Наконец, изолированные витки обмотки обладают емкостным сопротивлением. Поэтому такой приемник можно представить в виде трех сопротивлений (рис. 4, а).
Ответ. В этой цепи сопротивления соединены последовательно, и в них движется одинаковый ток.
Следует определить, чему равно общее напряжение на зажимах такой цепи и ее общее сопротивление.
Отложим вектор тока по горизонтали (рис. 4,6), а по нему и вектор напряжения, так как в цепи с активным сопротивлением ток и напряжение совпадают по фазе. Вектор напряжения на индуктивном сопротивлении откладываем вверх под углом 90° к вектору тока, потому что это напряжение опережает ток. Напряжение в цепи с емкостным сопротивлением отстает от тока на угол 90°, и поэтому вектор Ос откладываем вниз. Сложим векторы
и
и получим вектор UL– Uc, равный векторной сумме их. Находим общее напряжение на зажимах цепи, которое будет равно сумме_векторов, т. е. диагонали параллелограмма – вектору U. Из треугольника ABC
(рис. 4, в) по теореме Пифагора определяем
Полное сопротивление этой цепи находим из треугольника сопротивлений отсюда
2. При сборке подшипниковых узлов должны выполняться следующие технические условия:
1. Кольца и тела качения подшипника должны быть чистыми, без заметных дефектов. При вращении от руки подшипник должен вращаться свободно, без значительного шума. Новый подшипник с неповрежденной упаковкой и незагустевшей смазкой можно не промывать. Загрязненные подшипники промывают в бензине с добавлением 6-8 % минерального масла или в масле (Индустриальное 12 или 20) в ванне с электроподогревом при температуре 60-90 °С в течение 15-20 мин. Сильно загрязненные подшипники промывают дважды. После промывки подшипник просушивают на бумаге или с помощью сжатого воздуха. Пятна коррозии на подшипнике удаляют мягкой шкуркой и пастой ГОИ с последующей промывкой.
2. Осевой и радиальный зазоры в подшипнике должны быть в допускаемых пределах. Схема замера зазоров приведена на схеме. Величина начальных зазоров для подшипников различных типов приведена в специальной литературе.
3. Посадочные места в корпусе и на валу должны быть точно и чисто обработаны. Перед сборкой подшипникового узла посадочные места промывают керосином, просушивают и смазывают. Механические повреждения, забоины, вмятины, следы коррозии устраняют. Диаметры шеек валов контролируют с помощью предельных скоб и микрометров, а диаметры отверстий корпусов - предельными пробками, индикаторными нутромерами или штихмассами.
4. Во избежание перекоса радиус закругления галтели на валу (при отсутствии кольцевой проточки или выточки) должен быть меньше, чем радиус фаски у подшипника. Величину радиуса галтели проверяют с помощью радиусомера или шаблона.
5. Упорный заплечик вала или отверстия в корпусе должен быть перпендикулярен к посадочным поверхностям. Допускаемое торцовое биение приведено в таблице. Перпендикулярность заплечиков вала и корпуса оси посадочного места проверяют угольником или индикатором.
Дата добавления: 2015-08-13; просмотров: 115 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ЧАСТИ, ПОДЛЕЖАЩИЕ ЗАНУЛЕНИЮ ИЛИ ЗАЗЕМЛЕНИЮ | | | ТРЕБОВАНИЯ К ЗАЗЕМЛЯЮЩИМ УСТРОЙСТВАМ |