Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Гиперболический рост населения мира

Читайте также:
  1. v Структура смертности населения по причинам.
  2. VII. Социальная защита населения (**).
  3. А. Синельников.«Можно ли сразу остановить убыль населения в России?». Журнал «Демографические исследования», № 7 (25.03.2008).
  4. Анализ заболеваемости населения, прикрепленного к ГП с 2004 по 2006 гг.
  5. Б. Закрепощение тяглого населения
  6. БЛАГОПОЛУЧИЕ НАСЕЛЕНИЯ И ОБЩЕСТВЕННУЮ НРАВСТВЕННОСТЬ
  7. Брачная структура населения

Приведенные расчеты показывают, что ни линейный, ни экспоненциальный рост не могут описать развитие человечества за сколько нибудь значительное время. Демографические данные за много поколений свидетельствуют, что рост человечества хорошо укладывается только на гиперболическую кривую (см. рис. 1.1). В этом случае скорость роста пропорциональна квадрату полного числа людей. Переход к следующей степени зависимости скорости роста от числа людей, по сравнению с экспонентой, может показаться формальным шагом. Однако более глубокое рассмотрение показывает, что именно такая зависимость не только отвечает данным демографии за продолжительное время, но и обладает всеми свойствами, которым должен удовлетворять системный подход, поскольку в ней проявляется взаимодействие, охватывающее всех людей на Земле.

Рис 3.3 Гиперболический рост в линейном и логарифмическом масштабах:

A: N=100/(T1-T), B: N=104(T1-T). T1 -- особая точка обострения роста, момент, в котором население стремится к бесконечности. На шкале логарифмов T1 как 0 не отображается

Зависимость скорости роста от квадрата численности населения существенно нелинейная и не аддитивная, и потому применима только ко всему населению Земли, а не к отдельной стране или региону. Математически это выражается в том, что квадрат суммы всегда больше суммы квадратов слагаемых.

Гиперболический рост, описываемый степенной функцией, обладает еще одним существенным свойством -- такое развитие динамически самоподобно, причем его логарифмическая скорость постоянна, и на двойной логарифмической сетке такой рост изображается прямой линией (рис. 3.3). Так если население выросло в 10 раз, то и время, отсчитываемое от определенного момента, соответственно изменилось в 10 раз. Легко видеть, что линейный рост обладает этим же свойством, а экспоненциальный -- нет. В последнем случае при изменении численности в 2 раза время изменяется на время удвоения, а не в 2 раза.

Рост по гиперболе обращается в бесконечность по мере приближения к моменту расходимости -- особой точке для функции роста. Именно это соответствует наступлению демографического взрыва и отвечает, так называемому, режиму с обострением. В реальных условиях в этой области вступают в силу факторы, ограничивающие рост.

Анализ данных демографии приводит к простой формуле:

N = C/(T1-T) = 186 / (2025-T) млрд, (3.1;П.4)

где N -- число людей на Земле в момент времени T; T1 -- критическая дата от Рождества Христова; C -- постоянная с размерностью [ человекогоды ].

Здесь и далее в скобках с буквой П указаны номера формул в Приложении, посвященном математической теории.

Однако принятие квадратичного закона, приводящего к гиперболической кривой роста, обращающейся в бесконечность за конечное время, смущало многих исследователей. Из формулы (3.1) следует, что критическое время расходимости очень близко, и если тенденция роста, имевшая место до 1965 г., сохранится, такое время наступит в T1=2025 г. Это обстоятельство привело к тому, что некоторые (одни -- с юмором, а другие -- с ужасом!) увидели в описании демографического взрыва предвестника конца света [52].

Но указанный гиперболический рост приводит к абсурдному результату и в далеком прошлом, поскольку 20 млрд лет тому назад уже должно было бы быть 10 человек, несомненно космологов, которые могли бы наблюдать сотворение Вселенной. Очевидно, гиперболический закон роста имеет ограниченную область применения, и это то, чего от подобных степенных законов следует ожидать. Исходя из этого и следует установить границы роста числа людей по гиперболе как в прошлом, так и в будущем.

Рис. 3.4 Прохождение странами демографического перехода

1 -- Швеция, 2 -- Германия, 3 - СССР (Россия), 4 -- США, 5 -- Маврикий, 6 -- Шри-Ланка, 7 -- Коста-Рика, 8 -- Модель. Данные графиков сглажены. Ср. с рис. 10.1.

Следует предположить, что в далеком прошлом скорость роста не могла быть меньше одного человека, вернее гоминоида, за поколение или характерное время t. Этого простого предположения оказалось достаточно для того, чтобы дать оценку начала процесса образования человечества 4-5 млн лет тому назад. Развитие происходит до тех пор, пока скорость роста не становится столь большой, что система больше не может развиваться в таком самоускоряющемся режиме. Фактор, который должен быть снова учтен, есть время t, характеризующее жизнь человека -- его репродуктивную способность и продолжительность жизни. Этот фактор проявляется при прохождении через демографический переход -- процесс, характерный для всех популяций, который хорошо виден на примерах как развитых стран, так и развивающихся, в частности, представляющих регионы Африки, Азии и Южной Америки [73] (рис 3.4).

Существенно отметить, что скорость роста проходит именно через максимум, а не устанавливается на своем наибольшем значении. По мере того как скорость роста уменьшается, население Земли выходит на плато и стабилизируется. Hаселение мира в целом четко следует такому развитию в результате суммирования переходов в отдельных странах и регионах. При этом ограничение обязано именно пределу скорости роста, а не отсутствию ресурсов. Это будет справедливо до тех пор, пока наше воздействие на окружающую среду не приведет к глобальным по своим масштабам последствиям, которые уже в следующем приближении могут повлиять на развитие человечества.

Введенное характерное время определяется внутренней предельной способностью системы человечества и человека к росту. Эта постоянная, равная t =45 годам, определяется из анализа глобального демографического развития и дает масштаб времени, к которому следует относить процессы, происходящие в системе человечества. Характерное время "время человека" проявляется как в начале развития, ограничивая минимальную скорость роста, так и при демографическом переходе, указывая на предельную скорость роста. Значение этого времени весьма удовлетворительно отражает некоторую среднюю временную характеристику для жизни человека, хотя это число получено из обработки демографических данных как характеристика глобального демографического перехода, а не привнесено из опыта жизни, которому оно вполне отвечает, практически совпадая с современным значением среднего возраста человека.

Переход к разделу>>>1.1>>>1.2>>>1.3>>>1.4>>>1.5>>>1.6


Дата добавления: 2015-08-05; просмотров: 111 | Нарушение авторских прав


Читайте в этой же книге: Демографический взрыв и переход | Методы демографии | Сложность системы и уровень агрегации данных | Oбзор содержания книги | Системный подход в демографии | Взаимодействия в системе населения | Социальный человек как биологический вид | Слагаемые роста населения | Mир нелинейных систем | О междисциплинарных исследованиях |
<== предыдущая страница | следующая страница ==>
Линейный и экспоненциальный рост| Закон квадратичного роста

mybiblioteka.su - 2015-2024 год. (0.006 сек.)