Читайте также:
|
|
К л а с с и ф и к а ц и я п о ч и с л у у с л о в и й с в я з е й. Из курса теоретической механики известно, что свободное твердое тело в пространстве имеет шесть степеней свободы (рис. 1.1). Это – три поступательных движения вдоль трёх осей координат и три вращательных движения вокруг этих осей. Можно также сказать, что на свободное твёрдое тело не наложено ни одной связи. Если обозначить число степеней свободы буквой , а число связей буквой , то для свободного твёрдого тела можно записать: = 6, = 0.
Неподвижное твёрдое тело имеет = 0, = 6.
Ограничения, наложенные на относительное движение звеньев в кинематической паре, называются условиями связей.
В кинематических парах количества степеней свободы и условий связей могут быть от единицы до пяти, однако в сумме это количество во всех парах может быть равным только шести. Класс кинематической пары определяется количеством в ней условий связей. В соответствии с количеством возможных движений кинематическая пара называется одноподвижной, двухподвижной и так далее. Всё сказанное отражено в таблице.
+ | Класс кинематической пары | Название пары по количеству движений (степ. свободы) | ||
Свободное твёрдое тело | ||||
Пятиподвижная | ||||
Четырёхподвижная | ||||
Трёхподвижная | ||||
Двухподвижная | ||||
Одноподвижная | ||||
Неподвижное соединение твёрдых тел |
Некоторые примеры кинематических пар различных классов приведены на рис. 1.2. На этом рисунке пространственная система координат связана с одним из звеньев, в качестве которого может быть принята плоскость. Возможные относительные движения на рисунке указаны стрелками. На рис. 1.2, а вторым звеном пары является шар, который относительно плоскости не может двигаться вдоль координатной оси z ( = 1, = 5), что соответствует паре первого класса или пятиподвижной. На рис. 1.2, б представлен цилиндр на плоскости, у которого нет поступательного движения вдоль оси z и вращательного движения вокруг оси x ( = 2, = 4). В результате получается четырёхподвижная кинематическая пара или пара второго класса. Аналогичным образом присваиваются названия и другим кинематическим парам. На рис. 1.2, в показана кинематическая пара третьего класса или трёхподвижная (она называется сферическим шарниром), на рис. 1.2, г − кинематическаяпара четвёртого класса или двухподвижная, называемая цилиндрическим шарниром, на рис.1.2, д – кинематическая пара пятого класса или одноподвижная, называемая вращательной парой (она называется также просто шарниром) и на рис. 1.2, е – также кинематическая пара пятого класса, называемая поступательной парой. На рис. 1.2, ж изображена винтовая кинематическая пара, обладающая двумя движениями, однако в ней независимым является одно движение (вращательное), поэтому она относится к пятому классу.
При переходе из пространственной системы в плоскую твёрдое тело теряет три степени свободы, что означает, что на него наложено три связи. Так что свободное твёрдое тело в плоскости имеет = 3 и = 3. Например, тело, находящееся в координатной плоскости xy, может двигаться поступательно вдоль этих осей и вращаться вокруг оси, перпендикулярной плоскости xy (рис. 1.3). Поэтому в плоской кинематической паре количество ограничений в движении звена может быть или два, или одно. В первом случае общее количество условий связей вместе с тремя потерянными при переходе из пространства в плоскость составляет
= 5. Такая кинематическая пара в соответствии с числом является парой 5-го класса, а так как в ней может выполняться только одно движение ( = 1), то эта пара называется также одноподвижной кинематической парой.
Во втором случае общее количество условий связей = 4, и кинематическая пара является парой 4-го класса, а в соответствии с = 2 она называется двухподвижной кинематической парой (рис. 1.4). Как видноиз рисунка, пару 4-го класса в плоскости составляют две кривые 1 и 2, контактирующие друг с другом в точке A. Относительное движение звеньев этой пары возможно в направлении касательной
t – t (ось x) и вращение вокруг точки A. Невозможно движение вдоль нормали
n – n (ось y).
К л а с с и ф и к а ц и я п о х а р а к т е р у к а с а н и я э л е м е н т о в.
Элемент кинематической пары – это совокупность точек, линий или поверхностей, которыми одно звено входит в касание с другим звеном при образовании кинематической пары. Если касание элементов кинематической пары происходит по линии или в точке, то кинематическая пара высшая (пары 1-го, 2-го классов в пространстве и пара 4-го класса в плоскости), если касание происходит по поверхности, то кинематическая пара низшая (пары 3-го, 4-го и 5-го классов).
Механизмы с высшей кинематической парой передают меньшие нагрузки, но имеют малые потери на трение и легко проектируются. Элементы этих пар сложны в изготовлении.
Механизмы с низшими кинематическими парами передают большие нагрузки, имеют большие потери на трение, сложнее синтезируются. Элементы низших пар имеют простые формы в виде плоскостей, цилиндрических поверхностей, поэтому более технологичны, то есть просты в изготовлении.
Дата добавления: 2015-07-26; просмотров: 315 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Раздел 1. СТРУКТУРА, КИНЕМАТИКА | | | Расчет степени подвижности механизма |