Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Выведение расчетной формулы

Читайте также:
  1. А.3 Примеры решения задачи интерполяции с использованием формулы Лагранжа
  2. Аппроксимация экспериментальных данных с помощью интерполяционной формулы Ньютона.
  3. Ввод формулы.
  4. Выведение из сабспейса
  5. Вывод формулы геометрического передаточного числа рычажной передачи тормоза
  6. Вывод формулы и определение передаточного числа рычажной тормозной передачи

Так как начальная скорость груза равна нулю, то ,
где t - время движения груза. Тогда ускорение груза, направленное вниз, равно

. (13)

На груз действует его сила тяжести и сила натяжения нити . Если на вертикальной оси координат положительное направление выбрать вниз, то проекция второго закона Ньютона на эту ось имеет вид: . Отсюда сила натяжения нити равна

.

Момент силы натяжения, действующий на маятник Обербека, относительно горизонтальной оси z соответственно равен , где r - радиус шкива. Тогда

. (14)

Под действием момента силы маятник вращается с угловым
ускорением e. Если нить, навитая на шкив, не проскальзывает, то ускорение нити, равное ускорению груза, равно тангенциальному ускорению точек обода шкива . Отсюда

. (15)

Подставляя формулы (14) и (15) в формулу (12), найдем общий момент инерции маятника Обербека относительно горизонтальной оси z, проходящей через центр масс маятника

. (16)

Подставляя формулу (13) в формулу (16) и учитывая, что
r = d/2, получим формулу для определения момента инерции маятника Обербека относительно оси вращения:

. (17)

Если момент инерции крестовины со шкивами относительно оси вращения обозначить Iкр, то общий момент инерции маятника относительно этой оси равен

. (18)

Момент инерции IГ одного цилиндрического грузика относительно оси вращения находим с помощью формулы (10) и теоремы Штейнера (11):

, (19)

где m1 - масса грузика, r, Н - радиус и высота цилиндрического грузика,
R - расстояние центра масс каждого грузика до оси вращения. Подставляя формулу (19) в формулу (18), получим момент инерции маятника относительно оси вращения в виде:

, (20)

где .

Согласно формуле (20) меняя расстояние R центров грузиков до оси вращения, изменяем общий момент инерции I маятника Обербека.

 

 


Дата добавления: 2015-07-24; просмотров: 99 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Момент силы относительно точки и оси, момент инерции| Задание 1. Измерение длины математического маятника (прямое измерение)

mybiblioteka.su - 2015-2024 год. (0.008 сек.)