Читайте также:
|
|
Известно несколько способов представления синусоидально изменяющихся величин: в виде тригонометрических функций, в виде графиков изменения во времени, в виде вращающихся векторов и в виде комплексных чисел.
Расчет цепей периодического синусоидального тока облегчается, если изображать синусоидально изменяющиеся токи, напряжения и ЭДС векторами или комплексными числами. Установим данное соотношение.
Пусть некоторая электрическая величина (ток, напряжение, ЭДС и т.д.) изменяется по синусоидальному закону . В прямоугольной системе координат (рис. 3.12) расположим под углом вектор, длина которого в выбранном масштабе равна амплитуде (причем, y> 0, если отсчитывается против часовой стрелки).
Представим себе, что вектор с момента t = 0 начинает вращаться вокруг начала координат в положительном направлении с постоянной угловой скоростью, равной угловой частоте w. В момент времени t ¹ 0 вектор составляет с осью абсцисс угол . А его проекция на ось ординат будет равна мгновенному значению величины v. Таким образом, между мгновенным значением v (t) и вектором можно установить однозначное соответствие. На этом основании будем называть вектор вектором, изображающим функцию времени, иобозначать . Конечно, эти векторы, имеют смысл, отличный от смысла векторов, определяющих физические величины в пространстве (скорость, силу и др.). Поэтому такие изображения функции времени называют символическими.
Если считать ось абсцисс осью вещественных величин, а ось ординат – осью мнимых величин на комплексной плоскости, то вектор соответствует комплексному числу с модулем и аргументом y. Это комплексное число называют комплексной амплитудой. Иначе говоря, это комплексная величина, не зависящая от времени, модуль и аргумент которой равны соответственно амплитуде и начальной фазе заданной синусоидальной функции.
Дата добавления: 2015-07-24; просмотров: 84 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Гармонический ток в емкости | | | Понятие о комплексных числах |