Читайте также: |
|
1°. Векторное, параметрическое, общее и каноническое уравнение прямой в произвольной аффинной системе координат.
Фиксируем на плоскости аффинную систему координат, определяемую началом координат и базисными векторами . Тогда " точка плоскости определяется координатами .
Пусть прямая линия лежит в плоскости и проходит через точку параллельно вектору .
|
| |||
|
Рис.1. Прямая , проходящая через точку
параллельно вектору .
Определение 1. Всякий ненулевойвектор , параллельный прямой l, называется направляющим вектором этой прямой.
Если точка плоскости лежит на прямой, то вектор коллинеарен . Значим, R такое, что
. | (1) |
С другой стороны, всякая точка М, для которой выполнено уравнение (1), принадлежит прямой в силу определения произведения вектора на число.
Таким образом, условие М выполнению уравнения (1). Уравнение (1) называется векторным уравнением прямой.
Если обозначить радиус вектора точек через и соответственно, то и уравнение (1) принимает вид:
, | (2) |
которое также называется векторным уравнением прямой.
Если , то (2) в координатах принимает вид
(3) |
– параметрическое уравнение прямой на плоскости, проходящей через точку в направлении вектора .
Исключая из уравнения (3) параметр t,получаем
(4) |
– каноническое уравнение прямой на плоскости.
Уравнение (4) понимается как пропорцию. Тогда, если, например, , то прямая параллельна оси Oy и проходит через точку .
Приведем уравнение (4) к общему знаменателю:
.
Если обозначить , то получим:
(5) |
– общее уравнение прямой на плоскости.
Так как , то хотя бы один из коэффициентов А или В отличен от нуля ⇒ уравнение (5) представляет собой уравнение первого порядка. Таком образом, показано, что любая прямая является алгебраической линией первого порядка.
Верно и обратное: любая алгебраическая линия первого порядка на плоскости является прямой.
Действительно, уравнение (5) является линейным неоднородным уравнением, и в силу теории решения СЛНУ его общее решение имеет вид
где – частное решение уравнения (5) (например, при , частного решения можно выбрать вида , ), – фундаментальное решение соответствующего однородного уравнения. Сравнивая общее решение уравнения (5) с (3), представляющим собой параметрическое уравнение прямой на плоскости, можно видеть, что множество всех решений уравнения (5) представляет собой прямую, проходящую через точку и имеющей направляющий вектор .
Таким образом доказана следующая теорема.
Теорема 1. Прямые на плоскости – алгебраические линии первого порядка.
Из доказательства теоремы 1 следует, что если – уравнение прямой, то вектор является направляющим вектором этой прямой.
Если , то из уравнения (5) получаем:
,
т.е.
, где .
Отметим, что в произвольной декартовой системе координат коэффициент не играет роль углового коэффициента (т.е. не равен тангенсу угла наклона прямой к оси ). Например, на рис. 2 прямая имеет уравнение (или в каноническом виде ) и перпендикулярна оси
|
|
| |||||
Рис.2. Прямая в системе координат имеет уравнение .
Из канонического уравнения (4) легко выводится уравнение прямой, проходящей через 2 точки. А именно, если прямая l проходит через две точки и , то вектор можно выбрать в качестве направляющего вектора прямой. Тогда уравнение (4) принимает вид
, | (6) |
который называется уравнением прямой, проходящей через точки и .
Рассмотрим некоторые частные случаи общего уравнения прямой (5)..
1. Если А=0, то прямая параллельна оси .
2. Если B=0, то прямая параллельна оси .
3. Если C=0, то прямая проходит через начало координат.
4. Если A=C=0, то прямая совпадает с осью .
5. Если B=C=0, то прямая совпадает с осью .
6. Если , то уравнение (5) после деления на можно переписать в виде
, |
который называется уравнением прямой в отрезках. Здесь и равны отрезкам, отсекаемым прямой на координатных осях.
2°. Взаимное расположение прямых на плоскости. Полуплоскости.
Пусть на плоскости задана аффинная система координат .
Утверждение 1. Для того чтобы прямые и , задаваемые соответственно уравнениями
, | (7) |
и
, | (8) |
совпадали, необходимо и достаточно, чтобы
Дата добавления: 2015-07-20; просмотров: 88 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
мая 2014 года | | | Доказательство. |