Читайте также:
|
|
Кафедра математики
Методические указанияи задания к выполнению
расчетно-графической работы по теме:
"Приближенные методы решения
дифференциальных уравнений"
для студентов всех направлений подготовки бакалавров очной формы обучения всех специальностей
Брянск 2011
Брянская государственная инженерно-технологическая академия
Кафедра математики
Утверждены научно-методическим
советом БГИТА
Протокол №____от «___»_________2011 года
Методические указанияи задания к выполнению
расчетно-графической работы по теме:
"Приближенные методы решения
дифференциальных уравнений"
для студентов всех направлений подготовки бакалавров очной формы обучения всех специальностей
Брянск 2011
Составители: ст. преподаватель Тайц В.И.,
доцент Камозина О.В.,
доцент Котова И.А.
Рецензент: профессор кафедры Э и АПП, д. ф.-м. наук О.Г. Тайц
Рекомендованы редакционно-издательской и методической комиссиями механико-технологического факультета БГИТА.
Протокол №__________от «____»____________2011 г.
Приближенные методы решения дифференциальных уравнений
Решение многих дифференциальных уравнений нельзя свести к интегрированию известных функций. Поэтому важное значение приобретают приближенные методы решения.
Существуют два метода численного решения дифференциальных уравнений 1-го порядка: метод Эйлера и метод Рунге-Кутта.
Метод Эйлера
Для данного уравнения 1-го порядка
(1)
можно составить таблицу приближенных значений частного решения, удовлетворяющего начальному условию
(2)
или приближенно вычертить интегральную кривую на некотором отрезке[ ].
По методу Эйлера данный отрезок [ ] разбивается точками на n частичных отрезков.
На первом частичном отрезке [ ] искомая интегральная кривая, проходящая через известную точку M0() заменяется касательной к ней в точке
,
Откуда при получается приближенное значение искомого решения уравнения в точке
.
Далее тем же способом для отрезка [ ] находим приближенное значение искомого решения в точке
.
Продолжая этот процесс, последовательно находим приближенные значения искомого решения в точках .
С увеличением , при достаточно малой длине частичных отрезков, этим методом можно достигнуть заданной точности решения.
Данный отрезок [ ] удобно разделить на частичные отрезки одинаковой длины
(шаг).
Тогда все последовательные приближенные значения решения уравнения (1),удовлетворяющего начальному условию (2), вычисляются по рекуррентной формуле
.
Таким образом, по методу Эйлера интегральную кривую, проходящую через точку , заменяют ломаной (ломаной Эйлера), каждый отрезок которой проведен по направлению поля, определенного уравнением (1).Иными словами, от предыдущей вершины ломаной к последующей двигаются по касательной к интегральной кривой, проведенной через начальную точку каждого отрезка.
Недостатки метода Эйлера:
1. Малая точность при значительном шаге и большой объем работ при малом шаге.
2. Систематическое накопление ошибок.
Поэтому метод Эйлера применяют лишь для грубых приближений.
Расчет ведется по следующей схеме:
… | … | … | … | … |
-1 | ||||
Дата добавления: 2015-07-20; просмотров: 53 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Приближенное дифференцирование, основанное на интерполяционной формуле Ньютона | | | Метод Рунге-Кутта |