Читайте также:
|
|
Теорема 1. .
Доказательство:
Необходимость. Пусть , т.е. существует . Это означает, что независимо от выбора точек выполняется неравенство (1). Зафиксируем любое такое разбиение . Для него согласно свойству 1 сумм Дарбу можно указать такие суммы и , что выполняются неравенства (2) и (3). Отметим, что обе суммы и удовлетворяют неравенству (1). Из равенства и неравенств (1)-(3) следует , а это означает : (так как (4), следовательно, ) или .
Достаточность. Пусть выполнено неравенство (4). Согласно свойству 4 сумм Дарбу для любых и имеет место неравенство , поэтому . Отсюда согласно (4) следует, что . Значит, , т.е. . Полагая , получим, что для любого разбиения имеет место неравенство (5). Если же интегральная сумма и суммы Дарбу и отвечают одному и тому же разбиению , то (6). Из неравенств (5) и (6) следует, что (7). По условию для любого существует такое ,что из того, что , следует . Тогда из неравенства (7) получим при условии . Это означает, что число I является пределом интегральной суммы σ при , т.е. . ■
В дальнейшем нам понадобится другая форма записи необходимого и достаточного условия интегрируемости функции. Для этого введем - колебание функции на отрезке . Тогда . Так как и , то каждое слагаемое в сумме неотрицательно, и критерий существования определенного интеграла можно записать следующим образом: () ( ).
Дата добавления: 2015-07-26; просмотров: 77 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Пример. | | | П. 8 Классы интегрируемых функций |