Читайте также:
|
|
Алгоритм 1. Принятие решения о задаче и методе обработке, на стадии, когда данные уже получены.
Алгоритм 2. Принятие решения о задаче и методе обработки на стадии планирования исследования.
Примеры задач линейного программирования
Пример 1. Для изготовления трех видов изделий А, В и С используется токарное, фрезерное, сварочное и шлифовальное оборудование. Затраты времени на обработку одного изделия для каждого из типов оборудования указаны в табл. 1. В ней же указан общий фонд рабочего времени каждого из типов используемого оборудования, а также прибыль от реализации одного изделия каждого вида.
Таблица 1
Тип оборудования | Затраты времени (станко-часы) на обработку одного изделия каждого вида | Общий фонд рабочего времени оборудования (часы) | ||
А | В | С | ||
Фрезерное | ||||
Токарное | ||||
Сварочное | ||||
Шлифовальное | ||||
Прибыль (руб.) |
Требуется определить, сколько изделий и какого вида следует изготовить предприятию, чтобы прибыль от их реализации была максимальной. Составить математическую модель задачи.
Решение. Предположим, что будет изготовлено x1 единиц изделий вида А, единиц – вида В и единиц – вида С. Тогда для производства такого количества изделий потребуется затратить станко-часов фрезерного оборудования.
Так как общий фонд рабочего времени станков данного типа не может превышать 120, то должно выполняться неравенство
Аналогичные рассуждения относительно возможного использования токарного, сварочного и шлифовального оборудования приведут к следующим неравенствам:
При этом так как количество изготовляемых изделий не может быть отрицательным, то
(1)
Далее, если будет изготовлено x1 единиц изделий вида А, единиц изделий вида В и единиц изделий вида С, то прибыль от их реализации составит
Таким образом, приходим к следующей математической задаче: дана система
(2)
четырех линейных неравенств с тремя неизвестными и линейная функция относительно этих же переменных
. (3)
Требуется среди всех неотрицательных решений системы неравенств (2) найти такое, при котором функция (3) принимает максимальное значение. Как это сделать, будет показано в дальнейшем.
Линейная функция (3), максимум которой требуется определить, вместе с системой неравенств (2) и условием неотрицательности переменных (1) образуют математическую модель исходной задачи.
Так как функция (3) линейная, а система (2) содержит только линейные неравенства, то задача (1) - (3) является задачей линейного программирования.
Дата добавления: 2015-07-26; просмотров: 222 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Классификация задач и методов их решения | | | Пример 2. |