Читайте также:
|
|
Каждая мера центральной тенденции обладает характеристиками, которые делают ее ценной в определенных условиях.
Оценка дисперсии проводится по формуле:
Однако, чаще используется стандартное отклонение в генеральной выборке:
В тех случаях, когда какие-нибудь причины благоприятствуют более частому появлению значений, которые выше или, наоборот, ниже среднего образуется асимметричное распределение.
Показатель асимметрии (A) вычисляется по формуле:
В тех случаях, когда какие-либо причины способствуют преимущественному появлению средних или близких к ним значений, образуется распределение с положительным эксцессом. Если же в распределении преобладают крайние значения, причем одновременно и более низкие и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращая его в двувершинное.
Показатель эксцесса (E) определяется по формуле:
Принцип построения большинства интервальных шкал основан на известном правиле «трех сигм». Примерно 98% всех значений признака при нормальном распределении укладывается в диапазон M. Можноs 3± построить шкалу в единицах долей стандартного отклонения, которая будет охватывать весь возможный диапазон изменения признака, если крайний слева крайний справа интервалы останутся открытыми.
Например, Кенделл предложил шкалу стенов («стандартной десятки»). Среднее арифметическое значение в «сырых» баллах принимается за точку отсчета. Влево и вправо отмеряются интервалы равные ½ стандартного отклонения. Очень часто этот подход применяется в психологии.
Справа от среднего значения будут располагаться интервалы, равные 6 – 10 стенам, причем последний из интервалов открыт. Слева от среднего значения будут располагаться интервалы, соответствующие с 5 по 1 стен, и крайний левый будет открыт. Теперь мы поднимаемся вверх, к оси «сырых баллов», и размечаем границы интервалов в единицах «сырых баллов»., то есть 1.2 «сырыхs = 2.4, вправо мы отложим 1/2sПоскольку М = 10.2, балла». Таким образом, граница интервала составит 11.4 «сырых балла». Итак, граница интервала, соответствующего 6 стену, будут простираться от 10.2 до 11.4 баллов. В этот интервал попадет одно «сырое» значение – 11.
Влево от среднего значения получаем интервал 9 – 10.2, соответствующий 5 стену. В него входит 2 «сырых» величины: 9 и 10. Отсюда мы видим, что в шкале стенов иногда на разное количество «сырых» баллов будет приходиться одинаковое количество стенов.
В принципе шкалу стенов можно построить по любым данным, измеренным по крайней мере в порядковой шкале, при объеме выборки n > 200 и нормальном распределении признака.
Другой способ построения равноинтервальной шкалы – группировка интервалов по принципу равенства накопленных частот. При нормальном распределении признак в окрестностях среднего значения группируется большая часть всех наблюдений, поэтому в этой области среднего значения интервалы оказываются уже, а по мере удаления от центра распределения они увеличиваются. Следовательно, такая процентильная шкала является равноинтервальной только относительно накопленной частоты.
Дата добавления: 2015-07-26; просмотров: 166 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Модификации стандартной транспортной задачи | | | Статистические гипотезы |