Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Симплекс метод

Читайте также:
  1. A. Методы измерения мертвого времени
  2. HR– менеджмент: технологии, функции и методы работы
  3. I метод.
  4. I. 2. 1. Марксистско-ленинская философия - методологическая основа научной психологии
  5. I. 2.4. Принципы и методы исследования современной психологии
  6. I. Анализ методической структуры и содержания урока
  7. I. Методические указания к изучению курса

Решение любой задачи линейного программирования можно найти симплексным методом. Прежде чем применять указанный метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи.

Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.

Пусть требуется найти максимальное значение функции

при условиях

Здесь и – заданные постоянные числа

Векторная форма данной задачи имеет следующий вид: найти максимум функции

(22)

при условиях

(23)

(24)

где

Так как

то по определению опорного плана является опорным планом данной задачи (последние компонент вектора Х равны нулю). Этот план определяется системой единичных векторов которые образуют базис m- мерного пространства. Поэтому каждый из векторов а также вектор могут быть представлены в виде линейной комбинации векторов данного базиса. Пусть

Положим Так как векторы единичные, то и а


Дата добавления: 2015-07-26; просмотров: 118 | Нарушение авторских прав


Читайте в этой же книге: Пример 9. | Теоретическое введение | Общий вид транспортной матрицы | Решение | Модификации стандартной транспортной задачи | Выбор меры | Статистические гипотезы | Статистический критерий | Правило отклонения и принятия . | Классификация задач и методов их решения |
<== предыдущая страница | следующая страница ==>
Общая постановка задачи о принятии решения| Теорема 7.

mybiblioteka.su - 2015-2024 год. (0.009 сек.)