Читайте также: |
|
Общие положения. Мысленно обходя последовательно соединенные секции простой волновой обмотки, мы совершаем волнообразный обход якоря, причем каждый обход включает р секций и заканчивается на коллекторной пластине, которая находится слева или справа рядом с исходной (рис. 3-31). В первом случае (рис. 3-31, а) получается неперекрещенная обмотка, а во втором (рис. 3-31, б) —перекрещенная. Во втором случае расход меди будет несколько больше. Рассматриваемую обмотку называют также простой последовательной обмоткой.
В соответствии со сказанным между шагом по "коллектору ук (рис. 3-31) и количеством коллекторных пластин К простой волновой обмотки существует зависимость
Рис. 3-31. Секции неперекрещенной (а)
и перекрещенной (б) простой волновой
обмотки
Знак минус относится к неперекрещенной обмотке, а знак плюс — к перекрещенной. Поскольку шаг ук = у должен быть целым числом, то К не может принимать произвольных значений.
Шаг у1 определяется по формуле (3-9), и
Шаги у1 и у2 близки к т, а у = ук — к 2т.
Симметричная волновая обмотка. Ознакомимся со свойствами простой волновой обмотки на примере обмотки c2p = 4nZ = Z3 = = S = К — 17. Возьмем при этом
Порядок соединений секционных сторон обмотки определяется таблицей на рис. 3-32, а схема обмотки имеет вид, показанный на
Рис. 3-32. Таблица соединений секционных сторон простой волновой обмотки, показанной на рис. 3-33
рис. 3-33. Ряд секций, выделенных на рис. 3-33 жирными линиями, в отличие от секций петлевых обмоток замыкается накоротко через две щетки одной полярности и соединительные провода между ними. Короткозамкнутые секции обведены рамкой также и на рис. 3-32.
На рис. 3-34 построена звезда э. д. с. секций и векторная диаграмма э. д. £.. обмотки, представленной на рис. 3-33. Масштаб звезды э. д. с. в два раза больше масштаба многоугольника э. д. с.
Как следует из рис. 3-32, 3-33 и 3-34, обмотка имеет две параллельные ветви. Одна из них содержит секции 17, 8, 16, 7, 15, 6, присоединена своими концами к коллекторным пластинам 17, 14 и расположена, таким образом, между щетками А2, В2. Другая ветвь содержит секции 13, 4, 12, 3, 11, 2, присоединена концами к пластинам 13, 10 и расположена между щетками В2, А1,
Полученный вывод носит общий характер: всякая простая волновая обмотка имеет число параллельных ветвей
и векторная диаграмма э. д. с. такой обмотки всегда состоит из одного многоугольника.
Рис 3-33. Схема простой волновой обмотки с 2р = 4, Z = Zb= S = = К = 17, & = 4, & = 4, {/к = 8
Поскольку каждая из ветвей простой волновой обмотки проходит под всеми полюсами, то неравенство потоков полюсов не вызывает неравенства э. д. с. и токов параллельных ветвей. Поэтому такая обмотка не нуждается в уравнительных соединениях.
Более того, согласно выражениям (3-16) и (3-20), шаг уп в простой волновой обмотке является не целым числом и поэтому равнопотенциальных точек не имеется, что видно также из рис. 3-34.
При волновой обмотке на коллекторе можно установить только два щеточных пальца, например А1 и В2 на рис. 3-33, так как все щетки данной полярности соединены короткозамкнутыми секциями, через которые ток нагрузки распределяется по параллельно работающим щеткам каждой полярности. Два щеточных пальца примут на себя весь ток нагрузки, и короткозамкнутых секций не будет,
Эта возможность иногда используется в машинах мощностью до 0,5 кет, если доступ для ухода за щетками по всей окружности коллектора затруднен. Однако условия коммутации при этом ухудшаются. Кроме того, в более мощных машинах возникает необходимость удлинять коллектор. Поэтому обычно ставится полный комплект (2р) щеточных пальцев. При а = 1 условия симметрии (3-5), (3-6) и (3-7) удовлетворяются при любых р, Z, иП и К- Однако возможности выбора этих величин ограничиваются соотношением (3-20), которое при подстановке К = unZ принимает вид
Поскольку шаг ук должен быть целым числом, то отсюда видно, что, например, при четных р как Z, так и и„ должны быть нечетными (ип = 1, 3, 5...).
Простая волновая обмотка с мертвой секцией. Трудности в соблюдении равенства (3-20) или (3-23) в ряде случаев обходят, используя несимметричные обмотки. Например, при четных р и Z3 = unZ можно применить обмотку с К = Z3 — 1 и оставить одну секцию неиспользованной, или «мертвой». У этой секции обрезаются концы,
и она не присоединяется к коллектору (секция оставляется на якоре, чтобы
не нарушать балансировки).
Схема такой обмотки для 2р = 4, Z3 = 16 и К = 15 показана на рис. 3-35,
причем принято, что
Рис. 3-34. Векторная диаграмма э. д. с. обмотки, изображенной на рис. 3-33
При обходе обмотки и счете шагов стороны мертвой секции исключаются.
Искусственно замкнутая простая волновая обмотка. Предположим, что Z3= S = К = 16 и 2р = 4. Шаги обмотки выберем из предположения, что Z3, S и К на единицу больше, т. е. Z3 = S = К — 17. При этом, согласно выражению (3-20), можно взять
Исходя из таких значений шагов, составляем схему обмотки (рис. 3-36), начиная, например, с пластины 1. При первом обходе вокруг якоря проходим секции /и1+8=9и должны были бы прийти к пластине 9 + 8 = 17. Второй обход должен был бы включать в себя секции 17 и 8. Однако, поскольку секции 17 и пластины 17 нет, то после завершения первого обхода конец секции 9 с помощью
обходной перемычки непосредственно соединяем е пластиной 8 и началом секции 8. После этого ход обмотки следует по обычным правилам с тем лишь отличием, что каждый второй результирующий шаг сокращается на единицу.
Рис. 3-35. Схема лростой волновой обмотки с мертвой секцией с 2р = 4, Z= Z3 = 16, уг = 4, у2 = 4, ук = 8
Рис. 3-36. Схема искусственно замкнутой простой волновой обмотки с 2р = 4, Z = Z3 == S = К = 16, у,, = 4, й = 4, ук = 8
Рассмотренные несимметричные волновые обмотки находят применение в машинах мощностью до нескольких десятков киловатт и работают вполне удовлетворительно.
Дата добавления: 2015-07-18; просмотров: 471 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Сложная петлевая обмотка | | | Сложная волновая обмотка |