Читайте также:
|
|
Определить амплитудный спектр входного аналогового сигнала можно несколькими различными способами, например, с помощью нескольких полосовых фильтров или с помощью одного перестраиваемого фильтра; возможно использование преобразования Фурье, однозначно связывающего временное и частотное представления функции (сигнала).
Существует прямое и обратное преобразования Фурье (ПФ) для непрерывных (аналоговых) сигналов. Прямое ПФ позволяет, зная функцию сигнала x (t), определить его спектр S (f). Обратное ПФ, наоборот, дает возможность, зная спектр сигнала S (f),найти временное представление (функцию) самого сигнала x (t).
Понимая, что полноценное спектральное представление сигнала содержит амплитудный и фазовый спектры, здесь и далее будем говорить только об амплитудном спектре.
Существует ПФ и для дискретных (цифровых) сигналов. При этом спектр сигнала также является дискретным (линейчатым). В современных цифровых средствах анализа используется алгоритм дискретного преобразования Фурье (ДПФ) – Discret Fourier Transform (DFT), посредством которого массив зарегистрированных во временной области дискретных отсчетов сигнала преобразуется в дискретный спектр. К сожалению, практическая реализация ДПФ требует большого числа громоздких арифметических процедур. Если число отсчетов на интервале регистрации Т рравно N, то число необходимых операций умножения и сложения в ДПФ равно N 2. Поскольку скорость работы микропроцессора (микропроцессоров), естественно, ограничена, то это может привести в некоторых применениях к проблемам с быстродействием.
Существует разновидность ДПФ – быстрое преобразование Фурье (БПФ) – Fast Fourier Transform (FFT). В этом алгоритме определенным выбором числа отсчетов N быстродействие может быть обеспечено гораздо выше. Если выбрать число отсчетов N не случайным, а равным целой степени числа 2, то число требуемых процедур умножения и сложения может быть уменьшено до (N log2 N). Выигрыш в скорости можно продемонстрировать таким примером. Если число зарегистрированных отсчетов N = 1024, то реализация обычного алгоритма ДПФ требует N 2 ≈ 106 процедур, а в случае применения БПФ это число N log2 N = 1024×10 ≈ 104, т.е. примерно в 100 раз меньше и, следовательно, примерно в 100 раз быстрее будет осуществляться переход из временной области в частотную. Причем этот выигрыш возрастает по мере увеличения числа отсчетов N.
Так же как и при анализе во временной области, в спектральном анализе существуют понятия режимов реального и нереального времени обработки.
Дата добавления: 2015-07-15; просмотров: 200 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Анализ во временной области | | | Вычисление параметров электропотребления |