Читайте также:
|
|
Метод Стьюдента (f-тест)
Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариансой*.
* К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, результаты выполнения слишком легкого задания, с которым справились все испытуемые, или же, наоборот, слишком трудного задания не дают нормального распределения).
Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследовании двух различных
групп испытуемых (в нашем эксперименте это контрольная и опытная: группы). В случае независимых выборок для анализа разницы средних применяют формулу
где 1- средняя первой выборки;
2-средняя второй выборки;
s 1 - стандартное отклонение для первой выборки;
s 2 - стандартное отклонение для второй выборки;
n 1и п 2 — число элементов в первой и второй выборках.
Теперь осталось лишь найти в таблице значений t (см. дополнение Б.5) величину, соответствующую п — 2степеням свободы, где п - общее число испытуемых в обеих выборках (см. дополнение Б.4), и сравнить эту величину с результатом расчета по формуле.
Если наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5%), найденное в таблице, то можно отбросить нулевую гипотезу (Н0) и принять альтернативную гипотезу (Н1) т.е. считать разницу средних достоверной.
Если же, напротив, полученный при вычислении результат меньше, чем табличный (для п - 2степеней свободы), то нулевую гипотезу нельзя отбросить и, следовательно, разница средних недостоверна.
В нашем эксперименте с помощью метода Стьюдента для независимых выборок можно было бы, например, проверить, существует ли достоверная разница между фоновыми уровнями (значениями, полученными до воздействия независимой переменной) для двух групп. При этом мы получим:
Сверившись с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t = 0,53 меньше того, которое соответствует уровню достоверности 0,05 для 26 степеней свободы ( h = 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадлежать к одной популяции.
Сокращенно этот вывод записывается следующим образом:
t = 0,53; h= 28; р > 0,05; недостоверно.
Однако наиболее полезным г-тест окажется для нас при проверке гипотезы о достоверности разницы средней между результатами опытной и контрольной групп после воздействия 1. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы:
* Как уже говорилось, поскольку объем выборок в данном случае невелик, а результаты опытной группы после воздействия не соответствуют нормальному распределению, лучше использовать непараметрический метод, например U-тест Манна - Уитни.
Значение t....., чем табличное для 0,05 (..... степеней свободы). Следовательно, ему соответствует порог вероятности....., чем 0,05. В связи с этим нулевая гипотеза может (не может) быть отвергнута. Разница между выборками достоверная (недостоверна?):
t =.....; h =.....; Р.....(<, =, >?) 0,05;.....
Дата добавления: 2015-07-17; просмотров: 95 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Проверка гипотез | | | Контрольная группа. Сравнение результатов для фона и после воздействия |