Читайте также:
|
|
Как мы уже отмечали, характер распределения результатов после воздействия изучаемого фактора в опытной группе дает существенную информацию о том, как испытуемые выполняли задание. Сказанное относится и к обоим распределениям в контрольной группе:
Контрольная группа Мода (Mo) Медиана (Me) Средняя (М)
Фон: ………….. ………………. ……………...
После воздействия: ………….. ……………… ………………
Сразу бросается в глаза, что если средняя в обоих случаях почти одинакова, то во втором распределении результаты больше разбросаны, чем в первом. В таких случаях говорят, что у второго распределения больше диапазон, или размах вариаций, т. е. разница между максимальным и минимальным значениями.
Так, если взять контрольную группу, то диапазон распределения для фона составит 22 — 10 = 12, а после воздействия 25 — 8 = 17. Это позволяет предположить, что повторное выполнение задачи на глазодвигательную координацию оказало на испытуемых из контрольной группы определенное влияние: у одних показатели улучшились, у других ухудшились*. Однако для количественной оценки разброса результатов относительно средней в том или ином распределении существуют более точные методы, чем измерение диапазона.
* Здесь мог проявиться эффект плацебо, связанный с тем, что запах дыма травы вызвал у испытуемых уверенность в том, что они находятся под воздействием наркотика. Для проверки этого предположения следовало бы повторить эксперимент со второй контрольной группой, в которой испытуемым будут давать только обычную сигарету.
Чаше всего для оценки разброса определяют отклонение каждого из полученных значений от средней (М-), обозначаемое буквой d, a затем вычисляют среднюю арифметическую всех этих отклонений. Чем она больше, тем больше разброс данных и тем более разнородна выборка. Напротив, если эта средняя невелика, то данные больше сконцентрированы относительно их среднего значения и выборка более однородна.
Итак, первый показатель, используемый для оценки разброса, - это среднее отклонение. Его вычисляют следующим образом (пример, который мы здесь приведем, не имеет ничего общего с нашим гипотетическим экспериментом). Собрав все данные и расположив их в ряд
3 5 6 9 11 14,
находят среднюю арифметическую для выборки:
Затем вычисляют отклонения каждого значения от средней и суммируют их:
-5 -3 - 2 +1 +3 +6
(3 - 8) + (5 - 8) + (6 - 8) + (9 - 8) + (11 - 8) + (14 - 8).
Однако при таком сложении отрицательные и положительные отклонения будут уничтожать друг друга, иногда даже полностью, так что результат (как в данном примере) может оказаться равным нулю. Из этого ясно, что нужно находить сумму абсолютных значений индивидуальных отклонений и уже эту сумму делить на их общее число. При этом получится следующий результат:
среднее отклонение равно
Общая формула:
где å (сигма) означает сумму; | d | - абсолютное значение каждого индивидуального отклонения от средней; n -число данных.
Однако абсолютными значениями довольно трудно оперировать в алгебраических формулах, используемых в более сложном статистическом анализе. Поэтому статистики решили пойти по «обходному пути», позволяющему отказаться от значений с отрицательным знаком, а именно возводить все значения в квадрат, а затем делить сумму квадратов на число данных. В нашем примере это выглядит следующим образом:
В результате такого расчета получают так называемую вариансу*. Формула для вычисления вариансы, таким образом, следующая:
* Варианса представляет собой один из показателей разброса, используемых в некоторых статистических методиках (например, при вычислении критерия F; см. следующий раздел). Следует отметить, что в отечественной литературе вариансу часто называют дисперсией. - Прим. перев.
Наконец, чтобы получить показатель, сопоставимый по величине со средним отклонением, статистики решили извлекать из вариансы квадратный корень. При этом получается так называемое стандартное отклонение:
В нашем примере стандартное отклонение равно = 3,74.
Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30) в знаменателе выражения под корнем надо использовать не п,
а п — 1;
* Стандартное отклонение для популяции обозначается маленькой греческой буквой сигма (s), а для выборки - буквой s. Это касается и вариансы, т.е. квадрата стандартного отклонения: для популяции она обозначается s2, a для выборки -s2.
Вернемся теперь к нашему эксперименту и посмотрим, насколько полезен оказывается этот показатель для описания выборок.
На первом этапе, разумеется, необходимо вычислить стандартное отклонение для всех четырех распределений. Сделаем это сначала для фона опытной группы:
Дата добавления: 2015-07-17; просмотров: 107 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Оценка центральной тенденции | | | Расчет стандартного отклонения* для фона контрольной группы |