Читайте также: |
|
Обсудим теперь свойства боковых групп аминокислотных остатков. В особенности я хочу остановиться на том, какие именно структуры стабилизуют те или иные остатки.
Список 20 "стандартных", т.е. кодируемых ДНК аминокислотных остатков дан в Таблице 10/1; там же дан их молекулярный вес и встречаемость в белках. Структуры аминокислотных остатков представлены на картинке 10-1.
Таблица 10/1. Основные свойства аминокислотных остатков
_____ Аминокислотный остаток _____ | % в белках E.coli | Мол вес при pH7 (дальтон) | DGвода®спирт бок. группы при 250С (ккал/моль) | ||
название | код | ||||
3-букв. | 1-букв. | ||||
Глицин | Gly | G | |||
Аланин | Ala | A | -0.4 | ||
Пролин | Pro | P | -1.0 | ||
Глутаминовая кислота | Glu | E | »6 | +0.9 | |
Глутамин | Gln | Q | »5 | +.03 | |
Аспарагиновая кислота | Asp | D | »5 | +1.1 | |
Аспарагин | Asn | N | »5 | +0.8 | |
Серин | Ser | S | +0.1 | ||
Гистидин | His | H | -0.2 | ||
Лизин | Lys | K | +1.5 | ||
Аргинин | Arg | R | +1.5 | ||
Треонин | Thr | T | -0.3 | ||
Валин | Val | V | -2.4 | ||
Изолейцин | Ile | I | -1.6 | ||
Лейцин | Leu | L | -2.3 | ||
Метионин | Met | M | -1.6 | ||
Фенилаланин | Phe | F | -2.4 | ||
Тирозин | Tyr | Y | -1.3 | ||
Цистеин | Cys | C | -2.1 | ||
Триптофан | Trp | W | -3.0 |
Примечания. Все данные взяты из [3], — за исключением данных по гидрофобности боковых групп, которые взяты из I.I.Fauchere, V.Pliska, Eur. J. Med. Chem.-Chim. Ther. (1983) 18: 369. Объем (в 3), приходящийся на аминокислотный остаток в белке или в растворе, близок к его молекулярному весу в (дальтонах), умноженному на 1.3. Точнее, — процентов на 5 побольше, чем (мол. вес) x 1.3, если в остатке много алифатических (-СН2-, -СН3) групп, и процентов на 5 поменьше, чем (мол. вес) x 1.3, если в остатке много полярных (О, N) атомов.
Рис.10-1. Боковые цепи двадцати стандартных аминокислотных остатков.
Рассмотрим теперь структурные тенденции аминокислотных остатков; они стали известными после многолетнего статистического исследования белковых структур. Такие исследования отвечают на вопрос: "Что чаще всего бывает, и чего чаще всего не бывает?".
Для систематизации ответов полезной может быть следующая ниже Таблица 10/2, куда я вписал, наряду со встречаемостью аминокислотных остатков в разных местах белков, такие свойства остатков, как: наличие NH группы в главной цепи (ее нет только у иминокислоты пролина); наличие Сb атома в боковой цепи (его нет только у глицина); число не-водородных g атомов в боковой цепи; наличие и вид полярных группировок в боковой цепи (диполей или зарядов — со знаком; жирным выделено то зарядовое состояние, что относится к "нормальному" рН7).
Таблица 10/2. Основные структурные свойства аминокислотных остатков
A.к. | Наличие | число | Диполь/заряд | pK | Яркая тенденция быть в: | ||||||||
ост. | NH | Cb | g | до | спираль | за | клубок | ядро | |||||
aN | |aN | a | aC| | aC | b | ||||||||
Gly | - | - | + | ||||||||||
Ala | + | - | |||||||||||
Pro | + | - | - | - | - | + | |||||||
Glu | COOH Þ CO2- | 4.3 | + | + | - | - | - | - | |||||
Asp | COOH Þ CO2- | 3.9 | + | + | - | - | - | - | + | - | |||
Gln | OCNH2 | - | |||||||||||
Asn | OCNH2 | + | - | + | - | + | - | ||||||
Ser | OH | + | + | ||||||||||
His | NH; и N Þ NH+ | 6.5 | - | + | + | ||||||||
Lys | NH2 Þ NH3+ | 10.5 | - | - | + | + | - | - | |||||
Arg | HNC(NH2)2+ | 12.5 | - | - | + | + | - | + | - | ||||
Thr | OH | + | + | ||||||||||
Ile | + | - | + | ||||||||||
Val | + | - | + | ||||||||||
Leu | + | + | - | + | |||||||||
Met | + | + | - | + | |||||||||
Phe | + | - | + | ||||||||||
Tyr | OH Þ O- | 10.1 | - | + | + | ||||||||
Cys | SH Þ S- | 9.2 | - | + | + | ||||||||
Trp | NH | + | + |
Примечания. К "структурным свойствам" отнесена тенденция быть в a-спирали (a), и особо — в ее N- и С-концевых витках, а также — непосредственно перед N- и за С-концом спирали; тенденция быть в b-структуре; тенденция быть в нерегулярных структурах, т.е. "петлях" (включая сюда и b-изгибы цепи); и, наконец, — тенденция быть в гидрофобном ядре глобулы, а не на ее поверхности. Тенденцию "быть" я отмечал значком "+", "не быть " — значком "-". Жирным значком отмечалась особо сильная тенденция.
Попробуем понять основные закономерности этой таблицы исходя из того, что мы уже изучили. При этом мы будем использовать следующую логику: так как белок в целом стабилен — значит, он должен в основном состоять из стабильных элементов, т.е. именно они должны наблюдаться в его структуре чаще всего, а нестабильные должны наблюдаться редко.
Почему пролин не любит вторичной структуры? — Потому, что у него нет NH-группы в главной цепи, т.е. у него вдвое уменьшена возможность завязывать водородные связи — а именно на них и держится вторичная структура. Почему он, тем не менее, любит N-конец спирали? — Потому, что здесь, на N-конце, NH-группы "торчат" из спирали — т.е. они и так не вовлечены в водородные связи — и здесь пролину нечего терять... С другой стороны, угол j в пролине фиксирован его кольцом примерно при -60о — т.е. его конформация уже почти "готова" для a-спирали (Рис.10-2а).
Рис.10-2. Запрещенные и разрешенные конформации различных аминокислотных остатков и — на их фоне — конформации a и b структуры. (а) Разрешенные () для пролина конформации на фоне конформаций, разрешенных для аланина (); — конформации, запрещенные для них обоих. (б) Разрешенные () конформации аланина на фоне конформаций , разрешенные лишь для глицина; — области, запрещенные для всех остатков. (в) Карта запрещенных () и разрешенных (, ) конформаций более крупных остатков. В области разрешены все конформации боковой группы по углу c1, в области часть углов c1 запрещена.
Почему глицин не любит вторичной структуры и предпочитает нерегулярные участки ("клубок")? — Потому, что для него допустима очень широкая область углов (jy) на карте Рамачандрана (Рис.10-2б), — ему легко принимать самые разнообразные конформации, лежащие вне вторичной структуры.
Наоборот, аланин — с более узкой, но включающей и a, и b конформацию разрешенной областью на карте Рамачандрана (Рис.10-2б) — предпочитает нерегулярным конформациям a-спираль (и отчасти b-структуру).
Остальные гидрофобные остатки (т.е. остатки без зарядов и диполей в боковой цепи) предпочитают, как правило, b-структуру. Почему? Потому, что их крупные g-атомы могут там располагаться более свободно (Рис.10-2в). Особенно это важно для боковых групп с двумя крупными g-атомами — и, действительно, они любят b-структуру особенно сильно.
А вот аминокислоты с полярными группами в боковых цепях предпочитают нерегулярные участки ("клубок"), где эти полярные группы могут завязать водородные связи. Особенно заметна эта тенденция для наиболее полярных, заряженных при "нормальном" рН7 остатков, и для самых коротких (см. Рис.10-1), наиболее приближенных к главной цепи полярных боковых цепей. Кстати, по той же причине, — поскольку у них там есть возможность завязать дополнительную водородную связь, — короткие полярные боковые группы любят места у обоих концов спирали.
Некое исключение среди аминокислот с диполями в боковой цепи составляют триптофан и тирозин, имеющие маленький диполь на фоне большой гидрофобной части, и цистеин, у которого (т.е. у SН-группы которого) водородные связи совсем слабые. Они ведут себя, в общем, так же, как гидрофобные остатки.
Мы видим также, что отрицательно заряженные боковые группы предпочитают N-конец спирали (точнее: N-концевой виток и один-два остатка перед ним) и не любят С-концевой виток (и пару остатков за ним), а положительно заряженные — предпочитают C-конец спирали и не любят ее N-конец. Почему? — Потому, что на N-конце из спирали торчат NH-группы и на нем образуется заметный положительный заряд, и "минусы" боковых цепей притягиваются к нему, а "плюсы" — отталкиваются от него (Рис.10-3). А С-конец спирали заряжен, наоборот, отрицательно, — и там эффект противоположен: около С-конца любят собираться "плюсы" боковых цепей, а "минусы" его избегают.
Рис.10-3.
Что касается расположения остатков внутри белка или на его поверхности — здесь общая тенденция заключается в том, что полярные (гидро фильные) боковые группы находятся снаружи, где они могут контактировать с полярной же водой ("подобное растворяется в подобном"!). Отрываться от воды полярным группам плохо — теряются водородные связи. Особенно плохо отрываться заряженным группам: переход из среды с высокой диэлектрической проницаемостью (из воды) в среду с низкой (ядро белка) ведет к большому повышению свободной энергии. И действительно, — ионизированных групп внутри белка практически нет (а почти все исключения связаны с активными центрами — ради которых, собственно, белок и создан...).
Наоборот, большинство гидрофобных боковых групп находятся внутри белка — они-то и создают здесь гидрофобное ядро (опять: "подобное растворяется в подобном"!). Мы уже говорили, что гидрофобность группы тем больше, чем больше ее неполярная поверхность: именно ее нужно упрятать от воды. Для чисто неполярных групп гидрофобный эффект прямо пропорционален их поверхности, а для групп с полярными вкраплениями — их поверхности, за вычетом поверхности этих вкраплений.
Слипание гидрофобных групп — главная движущая сила образования белковой глобулы. Главная, но не единственная — еще есть образование водородных связей во вторичной структуре (о чем мы уже говорили) и образование плотной, квазикристаллической упаковки внутри белка (о чем мы еще поговорим в свое время).
Для создания гидрофобного ядра белковой цепью, она должна входить в него с уже насыщенными водородными связями — ведь иначе ее полярным пептидным группам от воды придется оторваться, а разрыв водородной связи дорог. Поэтому в гидрофобное ядро вовлекается цепь, уже образовавшая (или образующая при этом) вторичную структуру и тем самым насытившая водородные связи пептидных групп в главной цепи. Однако при этом в ядро должны увлекаться только гидрофобные остатки вторичной структуры, а входящие в нее полярные остатки должны остаться вне ядра, — потому и на a-спиралях, и на b-структурных участках выделяются гидрофобные и гидрофильные поверхности; для их создания необходимо определенное чередование соответствующих групп в белковой цепи (Рис.10-4).
Рис.10-4. Боковые группы, которые (если все они — неполярные) могут формировать единые гидрофобные поверхности на a-спиралях и на b-структурных участках. Аналогичные сочетания полярных групп в цепи приводят к образованию гидрофильных областей на противоположных поверхностях на a-спиралей и на b-тяжей.
Все закономерности, о которых мы сейчас говорили, используются как для конструирования искусственных белков, так и для предсказания — по аминокислотным последовательностям — вторичной структуры белков, а также для предсказаний тех участков их цепи, что глубоко погружены в белок, — или, наоборот, тех участков, что лежат на поверхности белка. К этим вопросам мы еще вернемся.
В заключение — еще немного о заряженных (или, точнее, ионизуемых) боковых группах. Повышение рН всегда делает группу "более отрицательной" — нейтральная группа приобретает отрицательный заряд, а положительно заряженная — разряжается, см. Рис.10-5. Переход из незаряженного в заряженное или из заряженного в незаряженное состояние происходит у разных групп при разных рН, однако ширина перехода при этом всегда одна и та же — около 2 единиц рН (в этом интервале отношение заряженной и незаряженной форм меняется от 10:1 до 1:10).
Следует обратить особое внимание на группы, переходящие из незаряженного в заряженное состояние при рН близком к 7, характерном для жизни белка в клетке: именно такие легко перезаряжаемые группы (и особенно гистидин) часто используются в активных центрах белков.
Рис.10-5. Заряженность ионизуемых боковых групп, а также N-конца пептидной цепи (NH2-Ca) и ее С-конца (Ca-C'OOH) при разных рН.
Дата добавления: 2015-07-16; просмотров: 64 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Лекция 9 | | | Лекция 11 |