Читайте также:
|
|
Вычислим вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит .
Воспользуемся формулой для нахождения вероятности заданного отклонения, в которую в качестве подставим :
.
Таким образом, вероятность того, что отклонение случайной величины по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Другими словами, вероятность того, что абсолютная величина отклонения превысит , составляет всего 0,0027. Такое событие, исходя их принципа невозможности маловероятных событий, можно считать практически невозможным.
Вывод (правило трех сигм): если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.
Дата добавления: 2015-07-15; просмотров: 81 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Закон распределения Гаусса | | | Нормальный закон распределения |