Читайте также: |
|
Матрица смежности Sm - это квадратная матрица размером NxN (N - количество вершин в графе), заполненная единицами и нулями по следующему правилу:
Если в графе имеется ребро e, соединяющее вершины u и v, то Sm[u,v] = 1, в противном случае Sm[u,v] = 0.
Заметим, что данное определение подходит как ориентированным, так и неориентированным графам: матрица смежности для неориентированного графа будет симметричной относительно своей главной диагонали, а для орграфа - несимметричной.
Задать взвешенный граф при помощи матрицы смежности тоже возможно. Необходимо лишь внести небольшое изменение в определение:
Если в графе имеется ребро e, соединяющее вершины u и v, то Sm[u,v] = ves(e), в противном случае Sm[u,v] = 0.
Это хорошо согласуется с замечанием, сделанным в предыдущем пункте: невзвешенный граф можно интерпретировать как взвешенный, все ребра которого имеют одинаковый вес 1.
Небольшое затруднение возникнет в том случае, если в графе разрешаются ребра с весом 0. Тогда придется хранить два массива: один с нулями и единицами, которые служат показателем наличия ребер, а второй - с весами этих ребер.
Таблица 11.8. Примеры матриц смежности | ||||||||||||||||
a | b | c | d | f | a | b | c | d | ||||||||
a | a | |||||||||||||||
b | b | |||||||||||||||
c | c | |||||||||||||||
d | d | |||||||||||||||
f |
Удобство матрицы смежности состоит в наглядности и прозрачности алгоритмов, основанных на ее использовании. А неудобство - в несколько завышенном требовании к памяти: если граф далек от полного, то в массиве, хранящем матрицу смежности, оказывается много "пустых мест" (нулей). Кроме того, для "общения" с пользователем этот способ представления графов не слишком удобен: его лучше применять только для внутреннего представления данных.
Дата добавления: 2015-07-15; просмотров: 111 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Многоключевые деревья | | | Основы алгоритмов криптографии. |