Читайте также:
|
|
док-во:
Пусть {Хn} – ограниченная, а {αn} – бм послед-и. Доказать, что {Xn * αn} – бм. Так как {Хn} ограниченна, то существует число А > 0 такое, что любой элемент Хn удовлетворяет неравенству | Хn | ≤ А. Возьмем любое ε > 0. Поскольку {αn} – бм, то для положительного числа ε/А существует номер N такой, что при n > N выполняется неравенство | αn | < ε/А. Тогда при n > N |Xn * αn | = |Xn| * | αn | < A * ε/A = ε. Это означает, что послед-ь {Xn * αn} – бм.
15. Может ли послед-ь {Xn + Yn} сходиться, если послед-ь {Xn} сходится, а послед-ь {Yn} расходится? Ответ обоснуйте.
нет, не может:x+y=z z-x-сход.z-x=y –не может
16. Докажите, что функция f(x) = sin 1/x не имеет предела в точке x = 0.
lim (x→0) sin 1/x по Гейне lim (n→∞) Xn = X0, lim(x→0+0) 1/x = +∞, lim(x→0-0) 1/x = - ∞
lim (x→0+0) sin 1/x – не сущ. sin (x→0-0) 1/x – не сущ.
17. Может ли функция f(x) +g(x) быть непрерывной в точке х0, если функция f(x) непрерывна, а функция g(x) имеет разрыв в этой точке, а функция g(x)имеет разрыв в этой точке. ответ обоснуйте.
Нет. Так как есть теорема, в которой говорится. Если f(x) и g(x)- непрерывные функции в точке x0, то непрерывными являются .
.f(x)=c-является непрерывной и f(x)=x.
18 Найдите значение а, при котором функция f(x) =1) (x^2-3x)*cos(1/x),x=/0;2) a, x=0 непрерывна в 0. Lim(1)=0, то а=0
19 определение производной в точке Пусть функция определена в некоторой окрестности точки x0(∆x=x-x0). Производной функции в точке x0 называется lim , когда (при условии, что lim существует). Обозначение .(x->x0) Lim=((x0+^x)^1/2-x0^1/2)/^x= lim(x^1/2-x0^1/2)/(x-x0)= lim1/(x^1/2+x0^1/2)=1/2 *x0^(-1/2)
20. f(x)=sinx, xо-произвольное число
Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.
f ’ (x)= =
f ′(xо)= = = = cosx0
21 f(x)= , xо =1
= = =-2
22 f(x)=x ½x½, x0=0
Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.
f ’ (x)= =
23
27f(x) = 3x, x0 = 5.
Эластичностью функции y = f(x) в точке х0 называется предел
E(x)=
28Докажите, что эластичность произведения двух функций равна сумме их эластичностей.
29Сформулируйте теорему Ролля. Можно утвержд, что производная функции f(x) = (x-2)(x-3)(x-4)(x-5) обращается в нуль в трех точках интервала (2,5)?
Пусть ф-ция непрерывна на отрезке [a;b], дифференцируема на интервале (a;b) и , то найдётся хотя бы одна точка , в которой .
Можно.
f(2)=0, f(3)=0, f(4)=0, f(5)=0 => существует С1из (2;3), такое, что f'(C1)=0, и тд 2, 3, 5, 4
30Сформулируйте теорему Коши для пары дифференцируемых функций. Выведите из теоремы Коши утверждение теоремы Лагранжа. Пусть функции f(x) и g(x) 1. непрерывны на отрезке [a, b]; 2. дифференцируемы в интервале (a, b); "x О (a, b) g'(x) ≠ 0. Тогда существует точка c О (a, b) такая, что . Частным случаем теоремы Коши (при g(x) = x) является теорема Лагранжа. |
32. Следует ли из существования производной функции в точке ее непрерывность в этой точке?
Если функция U=f(x) дифференцирована в некоторый точке x=x0, то она непрерывна в этой точке.
Это условии необходимое, но недостаточное.
Доказательство: пусть функция u= f(x) дифференцирована, тогда существует = а, тогда = а+a(x ), где a(x) – б.м.
Тогда Dy=Dxа + Dxa(x), Dy = (f ’ (x0)
43.(34) Сформулируйте теорему Лагранжа. Докажите, что если f ′(x) = 0 на интервале (a,b), то функция f (x) постоянна на этом интервале.
Пусть функция f(x)
1. непрерывна на отрезке [a, b];
2. дифференцируема в интервале (a, b).
Тогда существует точка с О (a, b) такая, что f(b) − f(a) = f '(c) · (b − a)
=>
Дата добавления: 2015-07-15; просмотров: 135 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Докажите, что предел произведения двух функций равен произведению их пределов, если последние существуют. | | | Сформулируйте и докажите теорему о производной произведения двух функций. |