Читайте также: |
|
Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.
Диапазон частот, пропускаемых фильтром без затухания (с малым затуханием), называется полосой пропускания или полосой прозрачности; диапазон частот, пропускаемых с большим затуханием, называется полосой затухания или полосой задерживания. Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.
В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.
Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.
Для упрощения анализа будем считать, что фильтры составлены из идеальных катушек индуктивности и конденсаторов, т.е. элементов соответственно с нулевыми активными сопротивлением и проводимостью. Это допущение достаточно корректно при высоких частотах, когда индуктивные сопротивления катушек много больше их активных сопротивлений (), а емкостные проводимости конденсаторов много больше их активных проводимостей ().
Фильтрующие свойства четырехполюсников обусловлены возникающими в них резонансными режимами – резонансами токов и напряжений. Фильтры обычно собираются по симметричной Т- или П-образной схеме, т.е. при или . В этой связи при изучении фильтров будем использовать введенные в предыдущей лекции понятия коэффициентов затухания и фазы.
Классификация фильтров в зависимости от диапазона пропускаемых частот приведена в табл. 1.
Таблица 1. Классификация фильтров
Название фильтра | Диапазон пропускаемых частот | |||
Низкочастотный фильтр (фильтр нижних частот) | ||||
Высокочастотный фильтр (фильтр верхних частот) | ||||
Полосовой фильтр (полосно-пропускающий фильтр) | ||||
Режекторный фильтр (полосно-задерживающий фильтр) |
где |
Если требуется более острый и более четко определенный срез частотной характеристики, который не может быть обеспечен фильтром типа k, то используется фильтр типа пг, производный от фильтра типа k. Фильтр типа m является по существу фильтром типа k с добавлением еще одного элемента, включаемого последовательно или параллельно. Фильтр, показанный на рис. 5.2, а, содержит дополнительную индуктивность L2, чем он и отличается от полусекции исходного фильтра нижних частот, изображенного на рис. 5.1, а. Очевидно, что включенная параллельно цепь из последовательно соединенных L2 и C1 на определенной частоте является резонансной и шунтирует выходные клеммы, так как импеданс цепи с последовательным резонансом на частоте резонанса минимальный [Фильтры типа m строят также, используя взаимную индукцию между индуктивными элементами фильтра типа k. — Прим. ред. ]. Фильтр типа М разрабатывают таким образом, чтобы на определенной частоте, находящейся за частотой среза fСР, обеспечивалось (при чисто реактивных элементах) бесконечно большое ослабление сигнала. Импедансы элементов фильтра связаны между собой постоянной т, зависящей от отношения частоты среза fСр к частоте бесконечно большого ослабления foo,. Значение m находится между нулем и единицей и обычно составляет 0,6. Для более острого среза величину m выбирают вблизи нуля. Для фильтра
(5.6)
На рис. 5.2, б показан эффект воздействия секции типа т на сигналы на частотах f>fcp. На рис. 5.2, в изображен Т-образный фильтр типа т, а на рис. 5.2, г — П-образный фильтр типа т. Следует обратить внимание на то, что дополнительным элементом в схеме на рис. 5.2, г является конденсатор, включенный параллельно индуктивности Lb При таком включении элементов LI и С2на определенной частоте возникает параллельный резонанс, и высокий импеданс цепи LiC2 на частоте резонанса приводит к сильному ослаблению сигнала.
Для фильтра нижних частот типа т, схема которого показана на рис. 5.2, а, параметры элементов фильтра находят из выражений
где Rn — сопротивление активной нагрузки.
Рис. Фильтры нижних частот типа m и их частотная характер? нижних частот величина m определяется выражением
Параметры дополнительных элементов фильтра, показанных на рис. 5.2, а и г, определяются из следующих формул:
У режекторного фильтра полоса прозрачности разделена на две части полосой затухания. Схема простейшего режекторного фильтра и качественные зависимости для него приведены на рис.6.
В заключение необходимо отметить, что для улучшения характеристик фильтров всех типов их целесообразно выполнять в виде цепной схемы, представляющей собой каскадно включенные четырехполюсники. При обеспечении согласованного режима работы всех n звеньев схемы коэффициент затухания такого фильтра возрастает в соответствии с выражением , что приближает фильтр к идеальному.
Дата добавления: 2015-07-15; просмотров: 80 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Раздачу пустотелых цилиндрических заготовок. | | | Задание 1. Рассчитать себестоимость единицы продукции. |