Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Непосредственные преобразователи частоты

Читайте также:
  1. Алгоритм определения частоты дыхательных движений
  2. В которой Фикс входит в непосредственные отношения с Филеасом Фоггом
  3. Влияние напряжения, сопротивления, частоты тока, времени действия пути прохождения тока, состояния нервной системы, схемы включения.
  4. Девиация частоты и фазы
  5. Зависимости амплитуды вынужденных колебаний и сдвига фаз от частоты внешнего воздействия. Резонанс.
  6. Задание 2. Определение частоты затухающих колебаний пружинного маятника и коэффициента затухания.
  7. Изменение содержания СО в отработавших газах по мере повышения частоты вращения коленчатого вала на холостом ходу приоткрытием дроссельной заслонки

Преобразователи частоты с непосредственной связью нагрузки с сетью, получившие название «непосредственные преобразователи частоты» (НПЧ), характеризуются однократным преобразованием энергии. Потребляемая из сети переменного тока электроэнергия с неизменными напряжением и частотой преобразуется в одном силовом устройстве в энергию переменного тока с регулируемыми по амплитуде и частоте напряжением и током нагрузки, в качестве которой служит трехфазный двигатель. В структурном отношении НПЧ весьма прост, его основу составляет реверсивный ТП постоянного напряжения. Если изменять управляющее напряжение ТП по синусоидальному закону с определенной частотой, то на выходе преобразователя получим выпрямленную ЭДС, синусоидально изменяющуюся с той же частотой и приложенную к однофазной нагрузке переменного тока. Изменяя частоту и амплитуду управляющего сигнала, будем изменять соответственно частоту и амплитуду выходной ЭДС. Очевидно, что для трехфазной нагрузки потребуется три комплекта реверсивных ТП, работающих с синхронизированным сдвигом фаз в 120° по выходной частоте НПЧ.

Число фаз входного и выходного напряжений НПЧ является весьма существенным признаком их классификации, т.к. оно в значительной мере определяет структуру построения схемы преобразователя.

Рассмотрим принцип работы НПЧ с естественной коммутацией на примере трехфазно-однофазной схемы (рис. 12.11).

В схеме преобразователя можно выделить две группы тиристоров: катодную (V1; V2; V3) и анодную (V4; V5; V6).

Допустим, что нагрузка zн активная. Включающие импульсы в процессе работы поступают на тиристоры катодной и анодной групп поочередно. Когда включающие импульсы, синхронизированные по частоте с напряжением питающей сети, подаются последовательно на тиристоры V1, V2, V3 катодной группы, она работает в режиме выпрямления (по трехфазной нулевой схеме), формируя на нагрузке положительную полуволну выходного напряжения относительно нулевого вывода трансформатора. Угол управления тиристоров – a.

При работе тиристоров V4, V5, V6 анодной группы на нагрузке относительно нулевого вывода трансформатора формируется отрицательная полуволна напряжения. В результате цикличной работы анодной и катодной групп на нагрузке создается переменное напряжение с частотой основной гармоники f2, более низкой, чем частота питающей сети f1.

Рис. 12.11. Схема преобразователя частоты с непосредственной связью нагрузки с сетью

Частота f2 определяется временем, в течение которого проводят ток тиристоры каждой группы. Изменением угла a можно регулировать выходное напряжение. Для исключения постоянной составляющей в напряжении на нагрузке время работы катодной и анодной групп должно быть одинаковым. На рис. 12.12 представлена диаграмма выходного напряжения при активной нагрузке.

Из диаграммы видно, что тиристоры катодной группы вступают в работу только после спада до нуля полуволны напряжения, формируемой анодной группой, и наоборот. Тиристор находится во включенном состоянии до тех пор, пока ток, протекающий через него, не спадет до нуля. Этот момент отслеживается системой управления, и только затем поступают управляющие сигналы на тиристоры другой группы.

Рис. 12.12. Диаграмма выходного напряжения при активной нагрузке

Основными достоинствами НПЧ с естественной коммутацией являются:

1. Относительно высокий КПД, что достигается благодаря однократному преобразованию электрической энергии.

2. Возможность двухстороннего обмена энергией между питающей сетью и двигателем, что обеспечивает как двигательные, так и тормозные режимы электропривода с рекуперацией энергии в сеть.

3. Возможность использования естественной коммутации вентилей с неполным управлением, что позволяет отказаться от устройств принудительной коммутации, снижающих экономичность, надежность, перегрузочную способность и ухудшающих массогабаритные показатели преобразователя частоты.

4. Возможность получения сколь угодно низких частот выходного напряжения преобразователя и обеспечения равномерного вращения двигателя на малых скоростях.

5. Практически неограниченная мощность НПЧ.

6. Возможность конструирования преобразователей по блочно–модульному принципу, обеспечивающему удобство эксплуатации и резервирования.

Основные недостатки НПЧ:

1. Ограничение максимальных значений выходной частоты на уровне порядка 0,5 от частоты сети.

2. Возможность появления субгармоник и постоянных составляющих выходного напряжения и тока при неблагоприятных соотношениях частот на входе и выходе преобразователя.

3. Низкий коэффициент мощности, несинусоидальность входных токов преобразователя частоты как потребителя в системе электроснабжения.

4. Сложность (многоэлементность) силовых цепей и цепей управления, что является оправданным лишь при выполнении ПЧ на сравнительно большие мощности.

В связи с этим НПЧ получили применение в основном для регулируемых тихоходных синхронных и асинхронных электроприводов средней и большой мощности. Здесь используются НПЧ с естественной коммутацией, получившие название циклоконвертеры.

Параллельно с циклоконвертерами разрабатывались НПЧ с принудительной коммутацией, реализация которых ориентирована на полностью управляемые ключи переменного тока.


Дата добавления: 2015-07-15; просмотров: 204 | Нарушение авторских прав


Читайте в этой же книге: Преобразователи переменного напряжения | Автономный инвертор | Защита посредством автоматических выключателей (автоматов) | Защита плавкими предохранителями | Защита с помощью R-C цепочек |
<== предыдущая страница | следующая страница ==>
Анализ истории развития ДПЧ| Защита управлением тиристорами

mybiblioteka.su - 2015-2024 год. (0.007 сек.)