Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Шесть функций сложного процента

Читайте также:
  1. II. Описание трудовых функций, входящих в профессиональный стандарт (функциональная карта вида профессиональной деятельности)
  2. А) Для финансирования задач и функций государства и местного самоуправления;
  3. Аргументы финансовых функций Excel анализа инвестиций
  4. Аргументы финансовых функций Excel анализа ценных бумаг
  5. Барт: Тридцать шесть лет, бывший служащий, алкоголик с четырнадцати лет. Воздерживается от спиртного в течение двух лет.
  6. Борьба против процента в истории народов не является новой
  7. в общем доходе предприятия, в процентах.

Первая функция сложного процента это фактор будущей стоимости текущего (сегодняшнего) капитала.

FV = PV*(1+i)n (1.4)

FV – это будущая стоимость текущего капитала (future value);

PV – текущая стоимость капитала (present value);

i – ставка процента;

n – количество периодов.

В каких случаях используется формула сложного процента:

Мы имеем какую-то сумму денег. Мы хотим положить ее в банк под определенный процент, на определенный срок (год, месяц, квартал). При этом мы хотим знать: сколько будут стоить наши деньги в конце срока вклада.

Пример. Допустим у нас есть 1 руб. и мы кладем его в начале года в банк, под 10% годовых на 5 лет. Сколько будет стоить этот руб. через 5 лет?

FV = 1 руб.*(1+10%)5 = 1,61 руб.

Пример. Вы положили деньги в банк 1000 руб. под 24% годовых на 1 год. Аккумулирование (т.е. начисление %) происходит два раза в год по фиксированной годовой ставке. Надо определить периодическую ставку (ip), будущую стоимость текущего капитала (FV), величину дохода на капитал (Д) и фактическую годовую ставку (iф).

Определим периодическую ставку, в данном случае – полугодовую: ip= iг/2 = 24% / 2 =12%

Определим будущую стоимость текущего капитала: FV =1000(1+0,12)2 = 1254,4 руб.

Определим величину дохода на капитал: Д = FV – PV = 1254,4 – 1000 = 254,4 руб.

Определим фактическую годовую ставку: iф= (FV–PV)/PV=(1254,4–1000)/1000=0,2544=25%

Фактическая ставка включает начисленные сложные проценты, поэтому она всегда больше, чем номинальная ставка. Кроме того, чем больше периодов начисления процентов в году, тем эта разница будет существеннее.

Пример. Через сколько лет произойдет удвоение капитала, если известно, что годовая номинальная ставка, под которую положили деньги в банк равна 12%?

Решение этой задачки основано на использовании так называемого «правила 72-х». Согласно этому правилу, количество лет, через которое произойдет удвоение вложенной суммы, определяется по формуле: 72 / номинальная годовая ставка %

72 / 12% = 6 лет.

1 руб. (1+0,12) 6 = 2 руб.

Правило дает удовлетворительный ответ при ставке, находящейся в диапазоне от 3 до 18%.

Вторая функция сложного процента – фактор будущей стоимости аннуитета.

Она предназначена для определения будущей стоимости равновеликих накоплений капитала за определенное число периодов, т.е. когда мы, например, будем вкладывать одну и ту же сумму денег (РМТ) в течение какого-то времени(1,2,3 года и т.п.).

РМТ (payment) – единовременный платеж в периоде k. (периоды одинаковые).

Серия таких платежей называется аннуитетом.

Различают обычный и авансовый аннуитет.

Будущая стоимость обычного аннуитета (платежи в конце каждого периода). Его будущая стоимость выражается в формуле:

FVк = (1+i)n - 1 *PMT (1.5)
i

Будущая стоимость авансового аннуитета (платежи в начале каждого периода). Будущая стоимость этого аннуитета выражается следующей формулой:

FVн =[ (1+i)n+1 - 1 - 1] *PMT (1.6)
i

Пример. Чтобы накопить себе на автомобиль, вы решили откладывать в банк по 1000 $ каждый год при 12% годовых в течение 5 лет. Как лучше откладывать деньги (в конце или в начале года), чтобы получить через 5 лет большую сумму и сколько денег окажется на вашем счете через 5 лет?

Определим, сначала, сколько денег мы получим через 5 лет, если будем откладывать в конце каждого года:

FVк = (1+12%)5 -1 *1000$ = 6353 $  
12%

Теперь определим, сколько денег мы будем иметь в том случае, если вклады делать в начале каждого года?

FVн = [ (1+12%)5+1 -1 -1] *1000$ = 7115 $
12%

Таким образом, получается, что вкладывать в начале каждого года гораздо выгоднее, чем в конце.


Дата добавления: 2015-07-18; просмотров: 289 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Бенедикт| Пятая функция сложного процента – фактор текущей стоимости аннуитета.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)