Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Построение графика функции двух переменных заданных в параметрической форме.

Читайте также:
  1. A. ФУНКЦИИ КНОПОК БРЕЛКА
  2. Analize®Compare Means®Paired-Samples T Test (удерживая Ctrl, выберите в списке переменных v7 и v26 и перенесите их в окно «Paired Variables»)®Ok
  3. II. Основные задачи и функции деятельности ЦБ РФ
  4. II. Основные задачи и функции медицинского персонала
  5. II.4. Механизм действия ингибиторов АПФ при эндотелиaльной дисфункции.
  6. III. Функции и полномочия контрактной службы
  7. IV. ОСНОВНЫЕ ФУНКЦИИ

Однако графики не всех поверхностей могут быть построены с помощью задания матрицы аппликат или способом, рассмотренным в разделе 3.2. Такие поверхности существуют уже среди поверхностей второго порядка: например, эллипсоид, каноническое уравнение которого имеет вид

 

. (1)

 

Невозможность построения графика поверхности упомянутыми способами объясняется следующим.

Зададим область изменения аргументов x, y:

 

- a £ x £ a, - b £ y £ b (2)

 

и выразим из (1) переменную z:

 

. (3)

 

Из (3) следует, что для некоторых значений x, y из области определения (2) переменная z может быть мнимой величиной. Это предопределяет невозможность построения графика с помощью задания матрицы аппликат.

Для таких поверхностей в MathCAD 2001 предусмотрен иной способ построения графиков. Но для этого необходимо перейти от явного или неявного задания поверхности к ее заданию в параметрической форме.

При параметрическом задании функции z = f (x, y) все три переменные x, y, z представляются как функции некоторых двух переменных u, v, называемых параметрами: x = x (u, v), y = y (u, v), z = z (u, v). Часто в качестве параметров u, v выбирают углы j, q, образуемые радиусом – вектором, проведенным из начала координат к некоторой точке M поверхности, и его проекцией на какую – либо координатную плоскость с осями координат. На рис 12 приведен пример выбора параметров j, q.

 
 


 

Рис.12.

 

Здесь: M – точка поверхности; M1 – проекция точки M на плоскость XOY; r – радиус – вектор, проведенный из начала координат в точку M; r 1 – проекция вектора r на плоскость XOY; j - угол, образованный вектором r с осью OZ; q - угол, образованный вектором r 1 с осью OY.

Подчеркнем, что рис. 12 всего лишь пример выбора параметров. Параметры u, v могли бы быть выбраны и по-иному.

Если же параметры выбраны в соответствии с рис. 12, то уравнение эллипсоида в параметрической форме имеет вид

 

x (j,q) = a sin (j) sin (q),

 

y (j,q) = b sin (j) cos (q), (4)

 

z (j,q) = c cos (j).

 

Истинность параметрического представления (4) проверяется подстановкой (4) в уравнение (1).

Для построения графика функции двух переменных (поверхности), заданной в параметрической форме, следует:

1) задать область изменения индексов i, j;

2) задать область изменения параметров в виде индексированных переменных (например, j i, q j);

3) задать поверхность в параметрической форме (например, xi , j, yi , j, zi , j);

4) набрать и выполнить команду: Insert – Graph – Surface Plot;

5) в структурную метку шаблона графика, расположенную около начала координат, ввести имена координат – (x, y, z) (без индексов и в круглых скобках).

На рис. 13 приведен фрагмент программы MathCAD 2001 по построению графика поверхности эллипсоида.

 
 

 

 


Рис. 13.

Для многих поверхностей их параметрические представления найдены и приведены в учебниках и справочниках по математике. Но не всегда во время работы за компьютером эти могут оказаться “под рукой”. Поэтому полезно уметь самостоятельно переходить от задания поверхности в виде уравнения в прямоугольных координатах к ее параметрическому заданию. При этом для большинства поверхностей второго порядка удобно в качестве параметров выбирать координату z (будем этот параметр обозначать как h) и угол q.

На примере эллипсоида (1) рассмотрим, как при выбранных параметрах h, q получаются параметрические представления большинства поверхностей второго порядка.

Положим в (1): z = h. Получим

или

. (5)

Уравнение (5) – это уравнение эллипса с полуосями

и .

Параметрическое представление эллипса известно:

x = A sin (q), y = B cos (q).

Следовательно, параметрическое представление эллипсоида при выбранных параметрах h, q:

,

,

z = h.

Фрагмент программы построения поверхности эллипсоида приведен на рис. 15.

 
 



Рис. 15.

 


Дата добавления: 2015-07-15; просмотров: 59 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Построение графика функции двух переменных с заданием матрицы аппликат.| Построение графика функции двух переменных с помощью встроенной функции CreateMesh.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)