Читайте также:
|
|
Как известно, любая электрическая цепь состоит или может быть представлена в виде двухполюсников. Пассивный двухполюсник однозначно определяется значениями тока и напряжения на входе или их отношением.
Пусть через некоторый двухполюсник протекает переменный ток и существует падение напряжения. Изобразим ток и напряжение на входе двухполюсника векторами на комплексной плоскости I и U (рис. 1).
Проектируя вектор U на направление вектора I (рис. 1 а)), получим вектор, модуль которого равен U а= U cosj, где j - разность начальных фаз напряжения и тока на входе двухполюсника, причем, направление вектора U а совпадает с направлением вектора тока, поэтому его запись в показательной форме будет иметь вид
, | (1) |
где y i - начальная фаза тока на входе двухполюсника.
Перпендикуляр, опущенный из конца вектора U на направление вектора тока, имеет длину U sinj и может рассматриваться как некоторый вектор U р, сумма которого с вектором U а равна U (рис. 1 а)). Его также можно записать в показательной форме в виде
. | (2) |
Оператор поворота j в выражении (2) учитывает перпендикулярное положение вектора U р по отношению к I и условие U а + U р = U.
Так как по построению векторы U а и U р в сумме равны U, то из выражений (1) и (2) вектор напряжения на входе двухполюсника можно представить как
. | (3) |
Разделим выражение (3) на модуль вектора тока
. | (4) |
Выражение (4) соответствует представлению на комплексной плоскости вектора Z, равного комплексному сопротивлению двухполюсника и развернутого относительно вещественной оси на угол y i. При этом вектор Z e jj e jy i=Zej (y u- y i+ y i)= Ze jy u образует с вещественной осью комплексной плоскости угол y u, т.е. оказывается совпадающим по направлению с вектором U.
Сравнивая вещественные и мнимые части выражений (3) и (4), можно представить модули составляющих вектора U в виде
, | (5) |
т.е. модуль составляющей U а, называемой активной или резистивной составляющей напряжения на входе двухполюсника, представляет собой падение напряжения на резистивной составляющей его комплексного сопротивления при токе I. Аналогично, модуль вектора U р, называемого реактивной составляющей входного напряжения, является падением напряжения на реактивной составляющей комплексного сопротивления.
Рассмотренным соотношениям величин соответствует представление двухполюсника последовательным соединением резистора R и реактивного сопротивления X, представленным на рис. 1 а).
Таким образом, вектор падения напряжения на входе двухполюсника может быть представлен двумя составляющими, одна из которых является его проекцией на направление вектора входного тока и называется активной (резистивной) составляющей или активным падением напряжения. Активная составляющая соответствует падению напряжения на резистивном сопротивлении последовательной эквивалентной схемы двухполюсника. Вторая составляющая перпендикулярна вектору тока и соответствует падению напряжения на реактивном сопротивлении последовательной эквивалентной схемы.
Прямоугольные треугольники UU а U р и ZRX (рис. 1 а)) подобны и называются соответственно треугольниками напряжений и сопротивлений.
ЗАДАЧА 1
Спроектируем теперь вектор тока I на направление вектора падения напряжения U (рис. 1 б)). Длина проекции будет равна I а= I cosj, а длина проектирующего перпендикуляра - I р= I sinj. Представим эти отрезки векторами с учетом того, что I а совпадает с направлением вектора падения напряжения на входе двухполюсника, а в сумме эти два вектора должны быть равны I. Тогда в показательной форме -
(6) | |
(7) |
Множитель - j является оператором поворота отрезка I р на 90° в направлении отставания, чтобы обеспечивалось условие I а + I р = I.
Представим теперь вектор тока через полученные составляющие
. | (8) |
Разделим выражение (8) на модуль вектора U -
. | (9) |
Таким образом, из прямоугольного треугольника, составленного из векторов I а, I р и I и описанного выражением (8), делением на постоянную величину U всех его сторон мы получили подобный треугольник, описываемый выражением (9). Стороны нового треугольника имеют размерность проводимости и связаны с составляющими вектора тока законом Ома
. | (10) |
Следовательно, активную и реактивную составляющую вектора тока можно представить, в виде токов, протекающих через активную (резистивную) проводимость G и реактивную проводимость B эквивалентной параллельной схемы двухполюсника (рис. 1 б)).
Прямоугольные треугольники II а I р и YGB (рис. 1 б)) подобны и называются соответственно треугольниками токов и проводимостей. Очевидно, что треугольники токов и проводимостей подобны треугольникам напряжений и сопротивлений, т.к. имеют одинаковые углы.
Обобщая понятия составляющих векторов тока и напряжения на входе двухполюсника, можно сделать следующие выводы:
Дата добавления: 2015-07-14; просмотров: 87 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Источники электрической энергии. Внешняя характеристика | | | Последовательное и параллельное соединения Эквивалентные параметры |