Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Библиографический список 3 страница

Читайте также:
  1. Amp;ъ , Ж 1 страница
  2. Amp;ъ , Ж 2 страница
  3. Amp;ъ , Ж 3 страница
  4. Amp;ъ , Ж 4 страница
  5. Amp;ъ , Ж 5 страница
  6. B) созылмалыгастритте 1 страница
  7. B) созылмалыгастритте 2 страница

7. Вероятность того что команда выйдет в финал игры, равна 0,6. Оценить вероятность того, что число команд, прошедших в финал игры, будет заключено в пределах от 7 до 11, если в играх участвует 15 команд.

8. Дисперсия каждой из 900 независимых случайных величин не превышает 5. Какой должна быть верхняя граница абсолютной величины отклонения средней арифметической этих случайных величин от среднего арифметического их математических ожиданий, чтобы вероятность такого отклонения превышала 0,95.

9. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х) =600; s(х)= 70; a = 500; b =700; d =40.

 

Вариант 17

1. Телевизионный канал рекламирует новый вид товара. Вероятность того что телезритель увидит эту рекламу, равна 0,2. Случайно выбирают 10 телезрителей. Составить закон распределения числа лиц, видевших рекламу. Найти числовые характеристики. Составить функцию распределения, построить её график.

2. На предприятии 1 000 единиц оборудования определённого вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi -2    
рi 0,4 0,3 0,3

 

уi -1    
рi 0,1 0,2 0,7

 

Z= 4Х + У.

4. Случайная величина Х задана функцией распределения F(х).

Требуется:

1. Найти функцию плотности распределения f(х).

2. Найти М(х), D(x), s(х).

3. Найти вероятность Р (a<x<b).

4. Построить графики f(x) и F(х).

F(х)= ,-1<х

a = -0,5, b =1,5.

5. Написать функцию плотности распределения и функцию распределения вероятности показательного распределения с параметром l. Найти вероятность попадания случайной величины в промежуток (a;b) и числовые характеристики:

l =6; a =1; b =4.

6. Вероятность покупки бракованного товара равна 0,2. Оценить вероятность того, что в партии из 600 единиц число бракованных товаров будет от 100 до 140.

7. Для определения среднего размера вкладов населения в 50 банках города было рассмотрено по два вклада из каждого банка. Оценить снизу вероятность того, что средний размер рассмотренных вкладов отличается от среднего размера всех вкладов по абсолютной величине меньше чем на 500 руб., если известно, что среднее квадратическое отклонение размера вкладов в банках меньше 700.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х) = 7; s(х)= 1; a = 4; b =7,5; d =3.

 

Вариант 18

1. Ежемесячно 2% компаний в крае прекращают свою деятельность по тем или иным причинам. Составить закон распределения закрывшихся организаций среди пяти наудачу выбранных. Найти числовые характеристики.

2. Академией рассматриваются 10 кандидатур студентов, претендующих на обучение за границей. Среди них трое в совершенстве владеют иностранным языком. Путём жеребьёвки отобрали четверо студентов. Составить закон распределения случайного числа студентов, владеющих языком среди четырёх отобранных. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi      
Рi 0,5 0,4 0,1

 

уi        
рi 0,2 0,3 0,4 0,1

 

Z= 2×(Х2+У).

4. Случайная величина Х задана плотностью вероятности f(x).

Требуется:

1. Найти коэффициент С.

2. Найти функцию распределения F(x).

3. Найти М(х); D(x); s(х).

4. Найти вероятность Р (a<x<b).

5. Построить графики f(x) и F(х).

f(х)= , 0<х

a =0; b =2.

5. Случайная величина Х распределена равномерно на отрезке (12; 20), Составить f(х),F(х), построить их графики. Найти М(х), Д(х), s(х), Р (15<х<18).

6. Вероятность того что в течение суток место на автостоянке перед рынком будет свободно, равна 0,2. Стоянка рассчитана на 800 мест. Оценить вероятность того, что в течение суток число свободных мест будет заключено в пределах от 140 до 180.

7. Дисперсия каждой из 2 800 независимых случайных величин не превосходит 9. Найти вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от среднего арифметического их математических ожиданий не превзойдёт 0,5.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х) = 0; s(х)= 5; a = -3; b =2; d =1.

 

Вариант 19

1. Вероятность поломки одного из пяти работающих независимо друг от друга станков равна 0,2. Если происходит поломка, станок до конца дня не работает. Составить закон распределения случайного числа станков, вышедших из строя в течение дня. Найти числовые характеристики.

2. Среди 10 поступивших в ремонт часов 6 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в общей чистке механизма, рассматривает их поочерёдно, пока не найдёт такие часы. Составить закон распределения случайного числа просмотренных часов. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi      
рi 0,4 0,5 0,1

 

уi      
рi 0,1 0,3 0,6

 

Z= (Х-У)2.

4. Случайная величина Х задана функцией распределения F(х).

Требуется:

1. Найти функцию плотности распределения f(х).

2. Найти М(х), D(x), s(х).

3. Найти вероятность Р (a<x<b).

4. Построить графики f(x) и F(х).

F(х)= , 1<х

a = 0; b =2.

5. Случайная величина Х распределена по показательному закону с параметром l= 3. Составить f(х), F(х), построить их графики. Найти М(х), Д(х), s(х), Р (0<х<4).

6. Вероятность того что студент воспользуется услугами банкомата, равна 0,4. Оценить вероятность того, что услугами банкомета воспользуются от 20 до 44 человек из 80.

7. Дисперсия каждой из 900 независимых случайных величин меньше 6. Найти вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от среднего арифметического их математических ожиданий превысит 0,6.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х) = 450; s(х)= 20; a = 430; b =490; d =15.

 

Вариант 20

1. Семейная фирма решила начать продажу своих акций на бирже. Известно, что 80% брокеров посоветовали своим клиентам купить эти акции. Наудачу отобрали шесть брокеров. Составить закон распределения случайного числа брокеров, предложивших своим клиентам купить акции фирмы. Найти числовые характеристики.

2. Среднее число грузовиков, прибывающих на склад под разгрузку в течение года, равно трем. Составить закон распределения случайного числа прибывших в течение часа машин, если автопарк предприятия составляет пять грузовиков. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi      
рi 0,3 0,6 0,1

 

уi -1    
рi 0,4 0,5 0,1

 

Z= Х2 + У2.

4. Случайная величина Х задана плотностью вероятности f(x).

Требуется:

1. Найти коэффициент С.

2. Найти функцию распределения F(x).

3. Найти М(х), D(x), s(х).

4. Найти вероятность Р (a<x<b).

5. Построить графики f(x) и F(х).

f(х)= , 0<х

a =0; b =3.

5. Случайная величина Х распределена равномерно на отрезке (-2; 8), Составить f(х),F(х), построить их графики. Найти М(х), Д(х), s(х), Р (0<х<5).

6. Вероятность выхода во второй тур конкурса для участника равна 0,2. Оценить вероятность того, что среди 1 000 участников во второй тур выйдут от 180 до 220 человек.

7. Среднее квадратическое отклонение каждой из 2 500 независимых случайных величин не превышает 5. Определить верхнюю границу абсолютной величины отклонения средней арифметической этих случайных величин от среднего арифметического их математических ожиданий так, чтобы вероятность такого отклонения превышала 0,75.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х)= 150; s(х)= 25; a = 120; b =200; d =10.

 

Вариант 21

1. Практика показывает, что 7% накладных, проходящих проверку в бухгалтерии, оказываются неправильно оформленными. Наугад отобраны пять накладных. Составить закон распределения случайного числа накладных, не содержащих ошибки. Найти числовые характеристики.

2. В транспортной компании работают 10 водителей, трое из которых имеют высшую квалификацию. В кабинет директора были приглашены четверо. Составить закон распределения случайного числа водителей высшей квалификации среди вызванных. Найти числовые характеристики.

3. Закон распределения случайной величины Х имеет вид:

 

хi      
рi 0,3 0,4 0,3

 

1.Составить законы распределения случайных величин Z1 и Z2.

2. Найти числовые характеристики полученных случайных величин.

3. Составить функции распределения Z1 и Z2, если

Z12 ; Z2=Х×Х.

4. Случайная величина Х задана функцией распределения F(х).

Требуется:

1. Найти функцию плотности распределения f(х).

2. Найти М(х), D(x), s(х).

3. Найти вероятность Р (a<x<b).

4. Построить графики f(x) и F(х).

F(х)= , 2<х

a =2,25; b =4.

5. Случайная величина Х распределена по показательному закону с параметром l =0,5. Составить f(х), F(х), построить их графики. Найти М(х), Д(х), s(х), Р (1,5<х<3).

6. В среднем заработная плата рабочего составляет 1 000 руб. в месяц. Дисперсия равна 0,1. Определить вероятность того, что у выбранного наугад рабочего заработная плата окажется не менее 800 и не более 1 200 руб.

7. Дисперсия каждой из 1 200 независимых случайных величин не превышает трех. Определить вероятность отклонения средней арифметической этих случайных величин от среднего арифметического их математических ожиданий не более чем на 0,45.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х)= 15; s(х)= 2; a =10; b =16; d =1.

 

 

Вариант 22

1. Производители карманных калькуляторов знают из опыта работ, что 1% производимых и проданных калькуляторов имеют дефекты и их должны заменить по гарантии. На контроле произвольным образом выбирают три калькулятора. Составить закон распределения числа калькуляторов, подлежащих замене. Найти числовые характеристики.

2. Вероятность того что случайно выбранный лицевой счёт клиента отделения сбербанка содержит ошибки, равна 0,05. Ревизором проводится выборочная проверка счетов до первого неправильно оформленного. Составить закон распределения случайного числа проверенных счетов. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi -2    
рi 0,15 0,5 0,35

 

уi      
рi 0,2 0,1 0,7

 

Z = У2 + 2Х.

4. Случайная величина Х задана плотностью вероятности f(x).

Требуется:

1. Найти коэффициент С.

2. Найти функцию распределения F(x).

3. Найти М(х), D(x), s(х).

4. Найти вероятность Р (a<x<b).

5. Построить графики f(x) и F(х).

f(х)= , 1<х

a =0; b =3.

5. Случайная величина Х распределена равномерно на отрезке (13; 17), Составить f(х),F(х), построить их графики. Найти М(х), Д(х), s(х), Р (13<х<15).

6. В автобусном парке 1 000 машин. Вероятность того что машина не выйдет на линию из-за поломки, равна 0,2. Оценить вероятность того, что число машин, не вышедших на линию, будет от 100 до 300.

7. Дисперсия каждой из 700 независимых случайных величин меньше 5. Найти вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от среднего арифметического их математических ожиданий превысит 0,5.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х)= -5; s(х)= 7; a= -7; b =5; d =3.

 

Вариант 23

1. Вероятность отказа за время испытаний каждого прибора серии равна 0,3. Наудачу выбрано пять приборов. Составить закон распределения случайного числа приборов, выдержавших испытание. Найти числовые характеристики.

2. На курсах повышения квалификации бухгалтеров учат проверять правильность накладной. В качестве проверки преподаватель предлагает обучающимся проверить 10 накладных, 4 из которых содержат ошибки. Он берёт наугад из этих десяти три накладные и просит проверить. Приведите возможные варианты проверки с соответствующими им вероятностями. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

 

хi -1    
рi 0,7 0,1 0,2

 

уi      
рi 0,3 0,5 0,2

 

Z=Х2 – 3У.

4. Случайная величина Х задана функцией распределения F(х).

Требуется:

1. Найти функцию плотности распределения f(х).

2. Найти М(х), D(x), s(х).

3. Найти вероятность Р (a<x<b).

4. Построить графики f(x) и F(х).

F(х) = , 2<х

a =1, b =10.

5. Случайная величина Х распределена по показательному закону с параметром l= 5. Составить f(х), F(х), построить их графики. Найти М(х), Д(х), s(х), Р (1<х<5).

6. Вероятность получения кредита равна 0,3. Оценить вероятность того что из 100 претендентов кредит получат от 25 до 35 человек.

7. Дано 220 независимых случайных величин. Вероятность того что абсолютная величина отклонения средней арифметической этих случайных величин от среднего арифметического их математических ожиданий не превысит 0,5, равна 0,3. Найти верхнюю границу дисперсии.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х)= 20; s(х)= 6; a =17; b =25; d =3.

 

 

Вариант 24

1. Статистическая вероятность ошибки аудитора, проверяющего счета, равна 0,02. Составить закон распределения случайного числа возможных ошибок, если были проверены пять наудачу выбранных счетов. Найти числовые характеристики.

2. В компании, сдающей на прокат две машины, каждодневный спрос на автомобили подчиняется распределению Пуассона и в среднем составляет 1,3 машины в день. Предположительно, машины используются в равной степени. Составить закон распределения числа машин, арендованных за день. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.

3. Составить функцию распределения Z и построить её график.

 

хi    
рi 0,4 0,6

 

уi      
рi 0,15 0,55 0,3

 

Z= Х+У.

4. Случайная величина Х задана плотностью вероятности f(x).

Требуется:

1. Найти коэффициент С.

2. Найти функцию распределения F(x).

3. Найти М(х), D(x), s(х).

4. Найти вероятность Р (a<x<b).

5. Построить графики f(x) и F(х).

f (х)= , -1

a = -2, b =2.

5. Случайная величина Х распределена равномерно на отрезке (70; 90). Составить f(х),F(х), построить их графики. Найти М(х), Д(х), s(х), Р (75<х<85).

6. Система состоит из 15 независимо работающих механизмов. Вероятность отказа каждого механизма за определённый период времени равна 0,01. Оценить вероятность того, что абсолютная величина разности между числом отказавших механизмов и средним числом отказов окажется меньше 2.

7. Дисперсия каждой из независимых случайных величин не превышает 9. Определить с вероятностью не меньшей чем 0,991 число таких величин, для которых отклонение их среднего арифметического от среднего арифметического их математических ожиданий не превзойдёт 0,4.

8. Случайная величина Х имеет нормальное распределение с параметрами М(х) и s(х).

Требуется:

1. Составить функцию плотности распределения и построить её график.

2. Найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (a;b).

3. Найти вероятность того, что абсолютная величина отклонения значений случайной величины от её математического ожидания не превысит d:

М(х)= 10; s(х)= 5; a = 8; b =13; d =2.

 

 

Вариант 25

1. Совет директоров некоторой фирмы состоит из пяти человек. Вероятность того что случайно выбранный из них проголосует за выдвинутого кандидата в президенты фирмы, составляет 0,7. Составить закон распределения числа акционеров, проголосовавших «за». Найти числовые характеристики.

2. Производится стрельба по мишени до первого попадания или до полного изросходования пяти пуль. Вероятность попадания при каждом выстреле 0,9. Составить закон распределения случайного числа произведённых выстрелов. Найти числовые характеристики.

3. Даны законы распределения двух независимых случайных величин Х, У.

1. Составить закон распределения случайной величины Z.

2. Найти числовые характеристики случайной величины Z.


Дата добавления: 2015-07-14; просмотров: 182 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Библиографический список 2 страница| Библиографический список 4 страница

mybiblioteka.su - 2015-2024 год. (0.041 сек.)