Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Рабочая память

Читайте также:
  1. Автоматическая память
  2. Аксессуар на память...
  3. Бессознательная память
  4. Больше мозг — больше и память
  5. БП2 (Биопамять Бытия Матрица) 2000 изм
  6. В ПАМЯТЬ О МАЛЬЧИКЕ, КОТОРЫЙ КРИЧАЛ: ВОЛК!
  7. Вечная память!

Рабочая память— это временно актуализированная система следов памяти, которая оперативно используется во время выполнения различных когнитивных действий (перцептивных, мыслительных и др.) и реализации целенаправленного поведения.

Рабочая (реже употребляется «оперативная») память (РП) позволяет обрабатывать информацию «на линии» (on-line) во время мыслительной и исполнительной деятельности. Термин «рабочая память» был введен, чтобы избежать путаницы с КП, которая относится к кратковременному сохранению следов сенсорных стимулов, оставшихся после их восприятия. Термин «рабочая память» применяется исключительно для следов, извлеченных из памяти.

Удобной экспериментальной моделью для изучения РП стали опыты с формированием отсроченного инструментального рефлекса. Они позволили тестировать способность животного управлять своим поведением, ориентируясь на представления об экспериментальной среде, сохраняя их в РП.

На рис. 24 (слева) показано принципиальное различие опыта для изучения рабочей (оперативной) памяти от опыта с выработкой обычного инструментального рефлекса (справа). При изучении РП обезьяне на короткое время предъявляют кусочек пищи, но получить его животное может только после некоторого периода отсрочки. В это время экспериментатор на виду у обезьяны может поменять место пищи и затем прикрыть оба места коробками. По завершении периода отсрочки в несколько секунд животное получает сигнал, что может взять пищу. Правильная реакция — безошибочный выбор коробки, прикрывающей кусочек пищи, — указывает, что в кратковременной памяти обезьяны сохранился зрительный образ пищи и места ее нахождения. При выработке обычного инструментального рефлекса коробка, прикрывающая пищу помечена, например, крестом, и свое место она меняет вместе с пищей. В таком опыте после периода отсрочки обезьяна должна запомнить ассоциацию «пища — крест» и всякий раз выбирать «крест» независимо от его местоположения.

П. Голдман-Ракич (1992) исследовала участие нейронов пре-фронтальной коры в рабочей памяти обезьяны при выработке гла-зодвигательного инструментального рефлекса — появления отставленной саккады на зрительную фигуру, предъявляемую в определенном участке зрительного поля. Обезьяна обучалась фиксировать взор на кресте в центре телевизионного экрана. Затем в одном из 8 участков экрана на короткое время появлялся зрительный стимул (квадрат). В конце отсрочки (3—6 с) центральный крест отключали, что служило сигналом к необходимости перевести взор на ту часть экрана, где перед отсрочкой появлялся целевой зрительный раздражитель — квадрат. Правильный ответ подкреплялся глотком виноградного сока. В префронтальной коре были обнаружены нейроны, которые переходили в активное состояние и генерировали ПД с удвоенной частотой сразу после того, как из периферического поля зрения животного исчезала цель (квадрат), имеющая для него особую значимость (рис. 25). Такой нейрон пребывал в активном состоянии только в течение всего периода отсрочки — в интервале от момента исчезновения цели до начала перевода глаз на место, где ранее был виден квадрат. В зависимости от места целевого стимула на экране во время отсрочки активируются разные нейроны. Нейроны, сохраняющие информацию о пространственном положении цели, получили название нейронов памяти. Их совокупность образует ядро системы пространственной рабочей памяти.

Рис. 24. Две модели опытов с отсроченными реакциями для изучения оперативной (рабочей) памяти и инструментального отставленного рефлекса на пищевом подкреплении (по П.С. Голдман-Ракич, 1992).

 

Если в период отсрочки работа нейрона памяти нарушалась, это вело к появлению ошибочной глазодвигательной реакции. Кроме рассмотренных нейронов, была выделена группа клеток, которая про-странственно-селективно реагировала на появление и исчезновение целевого стимула. Третья группа нейронов возбуждалась перед началом и во время саккады. Они представляют класс командных нейронов префронтальной коры, управляющих движением глаз через переднее двухолмие. Их реакция прерывает активность нейронов памяти, сохраняющих информацию о месте целевого стимула во время задержки.

Нейроны памяти префронтальной коры пространственно се-лективны. Разная локализация объекта, место которого нужно помнить во время задержки, активирует различные группы нейронов. Нейроны памяти префронтальной коры организованы в колонки. Каждая колонка специализируется на запоминании определенного участка зрительного поля, если там появился значимый объект. П. Голдман-Ракич (Goldman-Rakic P., 1996) обращает внимание на большое сходство модульной организации префронтальной коры, обрабатывающей зрительно-пространственную информацию, и первичной зрительной коры, где выявлены нейроны со специфической чувствительностью к различной ориентации стимула. Колонки префронтальной коры с разной пространственной ориентацией обнаруживают оппонентные отношения:

возбужденная колонка одного типа тормозит активность колонок других типов через систему тормозных интернейронов.

Опыты показывают, что обезьяна может удерживать в рабочей памяти не только информацию о месте нахождения объекта, но и образ самого объекта. В эксперименте, который получил название «зрительный поиск», обезьяне дают возможность рассматривать несколько фигур, одновременно демонстрируемых на экране. При этом экспериментатор подкрепляет соком те саккады, которые переводят взор на одну из фигур (например, квадрат). В результате тренировки животное научается выбирать из нескольких фигур ту, которая поощряется, фиксируя ее взглядом. Из этого следует, что образ целевого объекта находится в активной форме и используется в поведении для получения пищи.

У человека рабочая память может быть исследована с помощью вызванных потенциалов. Операция опознания стимула требует актуализации образа стимула и его сравнения с тем, что воспринимается. В префронтальной коре человека Р. Наатанен (Naatanen R.) выявил процессную негативность (ПН), которая возникает на релевантный стимул (ее получают процедурой вычитания: ВП на релевантный стимул минус ВП на индифферентный стимул). ПН рассматривается как показатель опознания целевого стимула. Эти данные подтверждают причастность префронтальной коры к операции считывания нужной информации из места постоянного хранения и ее сравнения с действующим стимулом.

Рассматривая химическую архитектуру префронтальной коры, П. Голдман-Ракич (Goldman-Rakic P., 1996) приходит к заключению, что главный модулятор префронтальной коры — ДА-ер-гическая система. ДА-модуляция нейронов РП осуществляется через особый тип дофаминовых рецепторов — D1R, локализованных на дистантных дендритах и шипиках пирамидных нейронов и на интернейронах префронтальной коры. Характерное для шизофрении нарушение РП сочетается с уменьшением в префронтальной коре плотности рецепторов D1R. Существует оптимальный уровень ДА-модуляции для успешной когнитивной деятельности. Большее и меньшее содержание ДА относительно оптимального значения ухудшает рабочую память. Флуктуациями высвобождения ДА и его захвата ДА-ергическими рецепторами можно объяснять флуктуации когнитивной деятельности.

Актуализация различного рода информации в режиме РП предполагает участие разных отделов префронтальной коры. Непространственная зрительная РП (на лица, объекты) использует нижнюю часть префронтальной коры. Пространственная зрительная рабочая память, используемая при игре в шахматы, во время ориентирования по карте, запоминания места, где находится объект, ландшафта, картин, а также при удержании в памяти местоположения целевого стимула в опытах с временной задержкой у человека и обезьяны, обеспечивается дорзолатеральной префронтальной корой.

Методом ПЭТ показано, что задание на ориентацию по карте вызывало большее увеличение локального мозгового кровотока в медиодорзолатеральной фронтальной коре и головке хвостатого ядра (ХЯ) левого полушария по сравнению с контрольным заданием, когда использовали идентичные стимулы и моторные реакции, но без необходимости удерживать текущую информацию в памяти. Трудное задание на планирование от легкого отличалось лишь большей активностью, но только в головке ХЯ и таламусе. Параллельная активация префронтальной коры и базальных ганглиев (хвостатого ядра) во время выполнения задания на ориентацию позволяет предполагать, что в РП воспроизводятся не только репрезентации самих объектов, их местонахождение, но и моторные акты, которые должны быть оперативно реализованы в поведении. Семантическое кодирование и воспроизведение, так же как и другие вербальные процессы, связаны'с активацией инсулярной и/или передней префронтальной области.

В онтогенезе префронтальная кора у человека созревает к 8 мес. Дети, не достигшие этого возраста, ведут себя так же, как и обезьяны с поврежденной префронтальной корой. Они вырабатывают условнорефлекторную реакцию, не обращая внимания на изменение места пищевого подкрепления. Способность к выполнению теста с отсроченным ответом у детенышей обезьян возникает в возрасте 2—4 мес. В этот период в префронтальной коре интенсивно образуются новые синаптические контакты.

Префронтальная кора тесно взаимодействует с основным хранилищем информации. По результатам исследований с применением ПЭТ энграммы памяти находятся рядом с сенсорными системами. Воспоминание об определенных событиях активирует те же зоны экстрастриарной коры (височной и теменной), которые ответственны за восприятие объектов, однако при этом увеличение метаболической активности охватывает более широкую зону. Информация о событиях и объектах хранится в блоках в непосредственной близости с параллельно работающими системами «Что» и «Где».

В процессе программирования поведения и двигательных актов информация, хранящаяся в теменной и нижневисочной коре, считывается на нейроны префронтальной коры через их прямые связи.

Следы памяти системы «Где» переписываются на нейроны префронтальной коры в виде константного пространства париетальной коры. На это указывают пространственно-селективные характеристики всех трех групп нейронов префронтальной коры. Их реакция избирательно зависит от локализации стимула и саккады во внешнем пространстве. Следы памяти системы «Что», локализованной в нижневисочной коре и реагирующей на сложные изображения (гностические единицы), также переписываются на пре-фронтальную кору. Нейроны нижневисочной коры характеризуются константностью в отношении комплексов признаков и поэтому узнают, например, лицо в разных ракурсах.

Косвенное подтверждение обмена информацией между теменной и префронтальной корой содержится в результатах опытов, полученных А.С. Батуевым на обезьянах, у которых вырабатывались пищевые инструментальные отсроченные двигательные реакции. Исследователь обнаружил одновременную активацию «нейронов памяти» в лобной и теменной коре. Они реагировали, изменяя частоту или паттерн активности, только в период отсрочки (от 5 до 20 с) между условным сигналом (вспышкой света) и двигательной реакцией — нажимом на рычаг, который открывал кормушку с пищей. У обезьяны вырабатывались дифференцировка условных сигналов по месту вспышки света (слева — справа) и правильный выбор рычага для нажима.

Между префронтальной корой и височно-теменными областями неокортекса существуют не только прямые, но и обратные связи. Наличие обратных связей из префронтальной коры в теменную и нижневисочную подтверждается появлением в них ответов на электрическую стимуляцию префронтальной коры.

Совместная активация префронтальной и теменной коры показана с помощью авторадиографического метода (с введением 2-дезоксиглюкозы). После выполнения теста на запоминание места нахождения фигуры и выполнения отсроченного ответа у обученной обезьяны уровень метаболической активности в префронтальной коре и структурах, с которыми она связана, — гиппокампе, нижней части теменной коры и таламусе — увеличен. При выполнении обычного инструментального рефлекса без необходимости в течение некоторого времени удерживать в памяти целевой стимул метаболическая активность этих структур заметно слабее.

Только наличием обратных связей от префронтальной коры к теменной и височной можно объяснить результаты опытов со «зрительным поиском», когда обезьяна научается выделять с помощью глазодвигательной реакции (саккады) определенную фигуру на экране. Это означает, что образ целевого стимула в результате тренировки животного приобретает более четкие очертания, т.е. происходит подчеркивание, усиление признаков стимула. Это возможно только в том случае, если нейроны памяти префронтальной коры в зависимости от результатов подкрепления корректируют следы памяти в височной и теменной коре. Перезапись информации через обратные связи из префронтальной коры автоматически функционирует постоянно, обеспечивая приобретение и непрерывную коррекцию наших знаний.

Существование обратных связей от префронтальной коры к основным хранилищам памяти позволяет по-новому взглянуть на механизм ретроградной амнезии. Амнестические агенты действуют на актуализированные энграммы, когда они используются в режиме рабочей памяти. Это касается как старых следов, активированных для оперативного использования, так и новых, только что приобретенных. В результате нарушения работы нейронов памяти префронтальной коры вносится искажение в содержание информации, которая перезаписывается через обратные связи для длительного хранения, что приводит к избирательной потере той памяти, которая предварительно была активирована.

Один из вопросов, который продолжает волновать психологов и психофизиологов, — почему мы, как правило, не помним или очень быстро забываем свои сновидения? Частичный ответ на этот вопрос дают недавние исследования метаболической активности структур мозга методом ПЭТ в цикле бодрствование—сон. Во время парадоксального сна выявлена сильная инактивация префронтальной (дорзолатеральной и орбитальной) коры — структуры, ответственной за рабочую память. Одновременно мощная активация охватывает лимбическую систему (особенно миндалину) и часть ассоциативной зрительной и слуховой коры. Во время парадоксального сна параллельно инактивации префронтальной коры отмечена редукция высвобождения норадреналина и серотонина (из синего пятна и ядер шва) — медиаторов, ответственных за обучение на отрицательном и положительном подкреплении (Hobson J.E., Stickgold R., Pace-Schott E.F., 1998). Новые комбинации образов, которыми так насыщены сновидения, вследствие блокады норадренергической и серотонинергической систем не получают подкрепления и из-за инактивации механизма рабочей памяти не переписываются на место постоянного хранения.


Дата добавления: 2015-07-11; просмотров: 100 | Нарушение авторских прав


Читайте в этой же книге: Филогенетические уровни биологической памяти | Временная организация памяти | Концепция активной памяти | Миндалина и эмоциональная память | Функции гиппокампа в процессах памяти | Нейронные феномены пластичности | Пластичность пейсмекерного механизма | РОЛЬ ИОННЫХ ПРОЦЕССОВ И ВНУТРИКЛЕТОЧНЫХ ВЕЩЕСТВ В ПЛАСТИЧНОСТИ НЕЙРОНОВ | ДОЛГОВРЕМЕННАЯ ПОТЕНЦИАЦИЯ И ДОЛГОВРЕМЕННАЯ ДЕПРЕССИЯ КАК ВЫРАЖЕНИЕ ПЛАСТИЧНОСТИ В БИДИРЕКЦИОННОМ СИНАПСЕ | МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ |
<== предыдущая страница | следующая страница ==>
Декларативная и процедурная память| Мозжечок и процедурная память

mybiblioteka.su - 2015-2025 год. (0.007 сек.)