Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные определения. Жидкостяминазываются вещества, имеющие определённый объем

Читайте также:
  1. I. Основные подсистемы автоматизированной информационной системы управления персоналом.
  2. I. Основные положения
  3. I. Основные функции и функциональные задачи управления фирмой.
  4. I. Основные химические законы.
  5. I. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
  6. II Философская концепция Э.Фромма: основные позиции, критика и переосмысление источников, открытия.
  7. II. Виды экспертно-аналитической деятельности и ее основные принципы

Жидкостями называются вещества, имеющие определённый объем, но не обладающие упругостью формы (то есть, не обладающие модулем сдвига). В отличие от твердых тел в жидкостях наблюдается ближний порядок (упорядоченное расположение соседних атомов или молекул на расстояниях порядка их нескольких межмолекулярных расстояний); дальний же порядок, присущий твердым телам (кристаллическая решетка) и вовсе отсутствует.

Временем “оседлой жизни” называется время, в течение которого молекулы жидкости сохраняют свое местоположение. По истечении данного времени, молекулы жидкости перемещаются на расстояния порядка 10-8 см. Молекулы жидкости, подобно молекулам твердых тел, совершают тепловые колебания около положений равновесия.

Текучесть – это способность молекул жидкости менять свое положение относительно других молекул. Вместе с тем, силы межмолекулярного взаимодействия достаточно велики и средние расстояния между молекулами остаются неизменными. По этой причине жидкости сохраняют свой объем.

Явление внутреннего трения (вязкости) состоит во взаимодействии соседних слоев реальной жидкости, движущихся с разными скоростями, которое приводит к появлению сил вязкости (внутреннего трения), касательных поверхности слоев. При этом, молекулы более быстрого слоя стремятся увлечь за собой молекулы более медленного, и наоборот, молекулы более медленного слоя тормозят движение более быстрого. Следовательно, силы вязкости направлены вдоль поверхности соприкасающихся слоев в сторону, противоположную их относительной скорости подобно силам трения скольжения (внешнего трения) при движении одного тела по поверхности другого. По своей природе силы трения в жидкости являются силами межмолекулярного взаимодействия, то есть, электромагнитными силами, как и силы трения между твердыми телами. Явление вязкости, таким образом, связано с передачей импульса из слоя в слой, т.е. относится к явлениям переноса. Так как молекулы жидкости основную часть времени находятся около положения равновесия, то движущаяся масса жидкости увлекает соседние слои в основном за счет сцепления (межмолекулярного взаимодействия). С ростом температуры текучесть жидкости возрастает, а вязкость падает. Это связано с тем, что при нагревании жидкость “разрыхляется” (т.е. незначительно увеличивается ее объем) и силы межмолекулярного взаимодействия ослабевают. Механизм вязкости в газе является иным, так как осуществляется из-за перехода молекул из слоя в слой. Поэтому с возрастанием температуры вязкость газов, возрастает, в отличие от жидкостей.

Ламинарным называется такое течение, когда жидкие частицы движутся вдоль устойчивых траекторий. Жидкость движется параллельными слоями. Скорости всех частиц жидкости параллельны течению. Если в ламинарный поток ввести подкрашенную струйку, то она сохраняется, не размываясь по всему потоку.

Турбулентным течение становится при больших скоростях – это неустойчивое, хаотичное (вихреобразное) движение частиц жидкости.

Установившимся или стационарным называется течение, если величины и направления скоростей частиц в каждой точке движущейся жидкости не изменяются со временем.

2.2. Закономерности движения реальной жидкости в цилиндрической трубе

Пусть имеется жидкость, различные слои которой движутся с различными скоростями (рисунок 1), причем скорости слоев, отстоящих на расстоянии Δ y, отличаются на величину Δ v. Тогда отношение Δ v/ Δ y показывает, насколько быстро меняется скорость жидкости от одного слоя к другому. Для двух бесконечно близких слоев (Δ y ®0) эта величина записывается в виде dv/dy и представляет собой градиент скорости grad (v) в направлении перпендикулярном скорости движения слоев.

Рис.1. Схематическое изображение слоев.

Ньютон впервые предположил, что сила вязкости или сила внутреннего трения dF в между двумя слоями жидкости прямо пропорциональна площади их соприкосновения dS τ, а также градиенту скорости:

. (1)

Коэффициент пропорциональности h,зависящий от природы жидкости и ее температуры, называется коэффициентом вязкости или просто вязкостью. Коэффициент вязкости h измеряется в Па·с.

Рассмотрим более подробно ламинарное течение жидкости по трубе круглого сечения радиуса R длиной l. Если разность давлений Δ P = P 1P 2 (P 1 > P 2) на концах трубы поддерживается постоянной, то установится стационарный режим течения, при котором за равные промежутки времени t через любое поперечное сечение трубы S будут протекать равные объемы жидкости V. Особенность течения вязкой жидкости по цилиндрической трубе состоит в том, что внешний слой жидкости, примыкающий к внутренней поверхности трубы, прилипает к ней и остается неподвижным, а скорость каждого из последующих слоев увеличивается по мере приближения к центру трубы. Течение жидкости можно представить в виде движения цилиндрических слоев, параллельных оси трубы. Мысленно выделим произвольную цилиндрическую область жидкости радиуса r и длины l (рисунок 2).

Рис.2. Схематическое изображение цилиндрической области жидкости.

На ее боковую поверхность St =2 prl со стороны внешнего слоя, текущего с другой скоростью, действует, согласно (1), сила вязкости:

. (2)

Кроме того, на основания цилиндра действует сила, связанная с разностью давлений:

. (3)

При стационарном течении жидкости скорость движения жидкости постоянна, поэтому силы, действующие на цилиндрический слой, должны быть равны и противоположны по направлению FB = FP, следовательно

. (4)

Выразим из этого уравнения dv и проинтегрируем получившееся выражение для того, чтобы найти скорость:

Пределы определенного интеграла выбраны из условия, что на стенке трубы (т.е. при r = R), скорость v должна обращаться в нуль. В результате получим

. (5)

Таким образом, скорость частиц движущейся жидкости изменяется от максимального значения (на оси трубы) до нуля (на стенках трубы) по параболическому закону (рисунок 3).

Рис.3. Распределение скоростей слоев жидкости в трубе.

Подсчитаем объем жидкости, протекающей через поперечное сечение трубы за время t. Для этого рассмотрим тонкий цилиндрический слой радиуса r, толщиной dr, текущий с постоянной скоростью v. За время t через кольцевую площадку площадью dS = 2 πrdr, которая представляет собой поперечное сечение этого тонкого слоя, протечет объем жидкости – dV = dS vt = 2 πrdr vt или, используя формулу (5),

(6)

Объем жидкости V, протекающей за время t через все поперечное сечение трубы S, находится путем интегрирования выражения (6) по r от 0 до R.

(7)

Разделив данное выражение на время t, получим объем жидкости, вытекающий из трубы за единицу времени или расход жидкости Q=V/t, а формула (7) будет иметь вид:

(8)

Формула (8) является количественным выражением закона Пуазейля. Из нее, в частности, следует, что расход жидкости обратно пропорционален длине трубы – l, и прямо пропорционален разности давлений на концах трубы и четвертой степени ее радиуса, то есть, чрезвычайно сильно возрастает с увеличением радиуса трубы.

Если предположить, что все частицы жидкости движутся не с различными скоростями, а с некоторой средней скоростью v ср, то расход жидкости Q, то

. (9)

Эксперименты показали, что закон Пуазейля оказывается справедливым лишь при относительно небольших скоростях движения жидкости. Осборн Ре΄йнольдс впервые заметил, что при достижении некоторой критической скорости движение жидкости теряет ламинарной характер и становится турбулентным (вихревым), то есть, струйка подкрашенной жидкости быстро расходится по всему сечению трубы в виде вихревых образований. Кроме того, было замечено, что значение критической скорости зависит также от размеров трубки и свойств самой жидкости. Так, например, если одна и та же жидкость течет по трубам различного диаметра, то в более широкой трубе переход от ламинарного течения к турбулентному будет происходить при меньших скоростях движения, чем в узкой. Таким образом, узкая труба оказывает более сильное, упорядочивающее влияние на характер движения жидкости. С другой стороны оказалось, что более вязкая жидкость сохраняет ламинарность течения при относительно более высоких скоростях движения.

Рейнольдс предложил характеризовать течение жидкости безразмерной величиной, названной числом Рейнольдса:

. (10)

Здесь r и h - плотность и вязкость жидкости, v ср - средняя скорость ее течения, R – радиус трубы.

Экспериментальные исследования показали, что ламинарный режим наблюдается при течениях, которым соответствуют значения чисел Рейнольдса не более ~1000. Переход от ламинарного к турбулентному течению происходит в области значений от 1000 до 2000, а при значениях Re > 2000 течение становится турбулентным.

 


Дата добавления: 2015-07-11; просмотров: 54 | Нарушение авторских прав


Читайте в этой же книге: Приборостроительный факультет | Методика выполнения работы | Определение числа Рейнольдса, соответствующего переходу от ламинарного течения жидкости к турбулентному |
<== предыдущая страница | следующая страница ==>
Задание| Движение тел в жидкостях

mybiblioteka.su - 2015-2024 год. (0.008 сек.)