Читайте также:
|
|
Точка называется точкой локального максимума функции
, если существует такая окрестность этой точки, что для всех
из этой окрестности выполняется неравенство:
.
Точка называется точкой локального минимума функции
, если существует такая окрестность этой точки, что для всех
из этой окрестности
.
Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка называется точкой строгого локального максимума функции
, если для всех
из окрестности этой точки будет справедливо строгое неравенство
.
Точка называется точкой строгого локального минимума функции
, если для всех
из окрестности этой точки будет справедливо строгое неравенство
.
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.
Теорема (Необходимое условие экстремума) Если функция имеет экстремум в точке
, то ее производная
либо равна нулю, либо не существует.
Точки, в которых производная равна нулю: , называются стационарными точками функции.
Точки, в которых выполняется необходимое условие экстремума для непрерывной функции, называются критическими точками этой функции. То есть критические точки - это либо стационарные точки (решения уравнения ), либо это точки, в которых производная
не существует.
Не в каждой своей критической точке функция обязательно имеет максимум или минимум.
Теорема (Первое достаточное условие экстремума) Пусть для функции выполнены следующие условия:
Тогда в точке функция
имеет экстремум, причем это минимум, если при переходе через точку
производная меняет свой знак с минуса на плюс; максимум, если при переходе через точку
производная меняет свой знак с плюса на минус.
Если производная при переходе через точку
не меняет знак, то экстремума в точке
нет.
Таким образом, для того чтобы исследовать функцию на экстремум, необходимо:
Дата добавления: 2015-11-26; просмотров: 84 | Нарушение авторских прав